Python | Pandas DataFrame.empty (original) (raw)
Last Updated : 30 Sep, 2022
Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels.
It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas. PandasDataFrame.empty attribute checks if the dataframe is empty or not. It returns True if the dataframe is empty else it returns False in Python.
In this article we will see How to Check if Pandas DataFrame is Empty.
Pandas – Check if DataFrame is Empty
Syntax: DataFrame.empty
Parameter: None
Returns: Boolean Type
Creating a DataFrame
Python3
import
pandas as pd
df
=
pd.DataFrame({
'Weight'
:[
45
,
88
,
56
,
15
,
71
],
`` 'Name'
:[
'Sam'
,
'Andrea'
,
'Alex'
,
'Robin'
,
'Kia'
],
`` 'Age'
:[
14
,
25
,
55
,
8
,
21
]})
index_
=
[
'Row_1'
,
'Row_2'
,
'Row_3'
,
'Row_4'
,
'Row_5'
]
df.index
=
index_
print
(df)
Output :
Use DataFrame.empty attribute
Example 1:
Here we will use DataFrame.empty attribute to check if the given dataframe is empty or not.
Python3
result
=
df.empty
print
(result)
Output :
False
Note: As we can see in the output, the DataFrame.empty attribute has returned False indicating that the given dataframe is not empty.
Example 2:
Now we will use DataFrame.empty attribute to check if the given dataframe is empty or not.
Python3
import
pandas as pd
df
=
pd.DataFrame(index
=
[
'Row_1'
,
'Row_2'
,
`` 'Row_3'
,
'Row_4'
,
`` 'Row_5'
])
print
(df)
result
=
df.empty
print
(result)
Output :
True
Note: As we can see in the output, the DataFrame.empty attribute has returned True indicating that the given dataframe is empty.
Using dataframe.shape[0]
Here we are using the dataframe’s shape that gives us the count of number of rows and number of columns.
Python3
import
pandas as pd
import
numpy as np
df
=
pd.DataFrame({
'A'
: [np.nan]})
print
(df.dropna().shape[
0
]
=
=
0
)
Output :
True