Pandas Dataframe.sort_values() (original) (raw)

Last Updated : 29 Nov, 2024

In Pandas, **sort_values() function sorts a DataFrame by one or more columns in ascending or descending order. This method is essential for organizing and analyzing large datasets effectively.

**Syntax: DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind=’quicksort’, na_position=’last’)

**Parameter:

The output returns a sorted DataFrame with the same dimensions as the original.

Sorting DataFrame by Column

This example demonstrates how to sort a DataFrame by player names in ascending order.

**Dataset Link: nba.csv

Python `

import pandas as pd

Load DataFrame from CSV file

data = pd.read_csv("nba.csv") print("NBA Dataset:") display(data.head())

Sort the DataFrame by the 'Name' column in ascending order

data.sort_values("Name", axis=0, ascending=True, inplace=True, na_position='last')

Display the sorted DataFrame

print("\nSorted DataFrame:") display(data.head())

`

**Output

Sorting-DataFrame-by-Column

Pandas DataFrame sorted by ‘Name’ Column

In the sorted DataFrame, the rows are arranged alphabetically by player names. The index may appear jumbled because sorting affects the order of rows.

Sorting DataFrame with Custom NaN Value Placement

In this example, the DataFrame is sorted by the “Salary” column, with null values positioned at the top (instead of the default last).

Python `

import pandas as pd

Load DataFrame from CSV file

data = pd.read_csv("nba.csv")

Sort by 'Salary' column, placing NaN values at the top

data.sort_values("Salary", axis=0, ascending=True, inplace=True, na_position='first')

Display the sorted DataFrame

print("DataFrame sorted by 'Salary' column by placing NaN values at the top:") display(data)

`

**Output

Sorting-DataFrame-with-Custom-NaN-Value-Placement

Here, NaN values in the ‘Salary’ column are placed at the top, followed by the sorted salary values.

Additionally, you can adjust the following parameters:

The **sort_values() function in Pandas is a versatile tool for sorting DataFrames by specific columns, with multiple options for handling null values and choosing sorting algorithms.