Pandas DataFrame.to_sparse() Method (original) (raw)

Last Updated : 31 Mar, 2023

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.

Pandas DataFrame.to_sparse

Pandas DataFrame.to_sparse() function convert to SparseDataFrame. The function implements the sparse version of the DataFrame meaning that any data matching a specific value it’s omitted in the representation. The sparse DataFrame allows for more efficient storage.

Syntax: DataFrame.to_sparse(fill_value=None, kind='block')

Parameter :

Returns : SparseDataFrame

Pandas SparseDataFrame Example

Example 1: Use DataFrame.to_sparse() function to convert the given Dataframe to a SparseDataFrame for efficient storage.

Python3 `

importing pandas as pd

import pandas as pd

Creating the DataFrame

df = pd.DataFrame({'Weight': [45, 88, 56, 15, 71], 'Name': ['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'], 'Age': [14, 25, 55, 8, 21]})

Create the index

index_ = pd.date_range('2010-10-09 08:45', periods=5, freq='H')

Set the index

df.index = index_

Print the DataFrame

print(df)

`

Output :

Now we will use DataFrame.to_sparse() function to convert the given dataframe to a SparseDataFrame.

Python3 `

convert to SparseDataFrame

result = df.to_sparse()

Print the result

print(result)

Verify the result by checking the

type of the object.

print(type(result))

`

Output :

As we can see in the output, the DataFrame.to_sparse() function has successfully converted the given dataframe to a SparseDataFrame type.

Example 2: Use DataFrame.to_sparse() function to convert the given Dataframe to a SparseDataFrame for efficient storage.

Python3 `

importing pandas as pd

import pandas as pd

Creating the DataFrame

df = pd.DataFrame({"A": [12, 4, 5, None, 1], "B": [7, 2, 54, 3, None], "C": [20, 16, 11, 3, 8], "D": [14, 3, None, 2, 6]})

Create the index

index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']

Set the index

df.index = index_

Print the DataFrame

print(df)

`

Output :

Now we will use DataFrame.to_sparse() function to convert the given dataframe to a SparseDataFrame.

Python3 `

convert to SparseDataFrame

result = df.to_sparse()

Print the result

print(result)

Verify the result by checking the

type of the object.

print(type(result))

`

Output :

As we can see in the output, the DataFrame.to_sparse() function has successfully converted the given Dataframe to a SparseDataFrame type.