Pandas DataFrame.to_sparse() Method (original) (raw)
Last Updated : 31 Mar, 2023
Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas DataFrame.to_sparse
Pandas DataFrame.to_sparse() function convert to SparseDataFrame. The function implements the sparse version of the DataFrame meaning that any data matching a specific value it’s omitted in the representation. The sparse DataFrame allows for more efficient storage.
Syntax: DataFrame.to_sparse(fill_value=None, kind='block')
Parameter :
- fill_value : The specific value that should be omitted in the representation.
- kind : {‘block’, ‘integer’}, default ‘block’
Returns : SparseDataFrame
Pandas SparseDataFrame Example
Example 1: Use DataFrame.to_sparse() function to convert the given Dataframe to a SparseDataFrame for efficient storage.
Python3 `
importing pandas as pd
import pandas as pd
Creating the DataFrame
df = pd.DataFrame({'Weight': [45, 88, 56, 15, 71], 'Name': ['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'], 'Age': [14, 25, 55, 8, 21]})
Create the index
index_ = pd.date_range('2010-10-09 08:45', periods=5, freq='H')
Set the index
df.index = index_
Print the DataFrame
print(df)
`
Output :
Now we will use DataFrame.to_sparse() function to convert the given dataframe to a SparseDataFrame.
Python3 `
convert to SparseDataFrame
result = df.to_sparse()
Print the result
print(result)
Verify the result by checking the
type of the object.
print(type(result))
`
Output :
As we can see in the output, the DataFrame.to_sparse() function has successfully converted the given dataframe to a SparseDataFrame type.
Example 2: Use DataFrame.to_sparse() function to convert the given Dataframe to a SparseDataFrame for efficient storage.
Python3 `
importing pandas as pd
import pandas as pd
Creating the DataFrame
df = pd.DataFrame({"A": [12, 4, 5, None, 1], "B": [7, 2, 54, 3, None], "C": [20, 16, 11, 3, 8], "D": [14, 3, None, 2, 6]})
Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
Set the index
df.index = index_
Print the DataFrame
print(df)
`
Output :
Now we will use DataFrame.to_sparse() function to convert the given dataframe to a SparseDataFrame.
Python3 `
convert to SparseDataFrame
result = df.to_sparse()
Print the result
print(result)
Verify the result by checking the
type of the object.
print(type(result))
`
Output :
As we can see in the output, the DataFrame.to_sparse() function has successfully converted the given Dataframe to a SparseDataFrame type.