Python | Pandas Index.append() (original) (raw)
Last Updated : 24 Aug, 2023
Python is an excellent language for data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. **Pandas are one of those packages, making importing and analyzing data much easier.
PandasIndex.append()
The function is used to append a single or a collection of indices together. In the case of a collection of indices, all of them get appended to the original index in the same order as they are passed to the Index.append()
function. The function returns an appended index.
**Syntax:
Index.append(other)**Parameters :
**other : Index or list/tuple of indices**Returns : Index
**Example 1: Use Index.append()
function to append a single index to the given index.
Python3
import
pandas as pd
df1
=
pd.Index([
17
,
69
,
33
,
5
,
0
,
74
,
0
])
df2
=
pd.Index([
11
,
16
,
54
,
58
])
print
(df1,
"\n"
, df2)
**Output :
Int64Index([17, 69, 33, 5, 0, 74, 0], dtype='int64')
Int64Index([11, 16, 54, 58], dtype='int64')
Let’s append the df2 index at the end of df1.
Python3
**Output :
Int64Index([17, 69, 33, 5, 0, 74, 0, 11, 16, 54, 58], dtype='int64')
As we can see in the output, the second index i.e. _df2 has been appended at the end of _df1 .
**Example 2: Use Index.append()
function to append a collection of indexes at the end of the given index.
Python3
import
pandas as pd
df1
=
pd.Index([
'Jan'
,
'Feb'
,
'Mar'
,
'Apr'
])
df2
=
pd.Index([
'May'
,
'Jun'
,
'Jul'
,
'Aug'
])
df3
=
pd.Index([
'Sep'
,
'Oct'
,
'Nov'
,
'Dec'
])
print
(df1,
"\n"
, df2,
"\n"
, df3)
**Output :
Index(['Jan', 'Feb', 'Mar', 'Apr'], dtype='object')
Index(['May', 'Jun', 'Jul', 'Aug'], dtype='object')
Index(['Sep', 'Oct', 'Nov', 'Dec'], dtype='object')
Let’s append both the indexes _df2 and _df3 at the end of _df1.
Python3
**Output :
Index(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
'Nov', 'Dec'],
dtype='object')