Python | Pandas Index.to_frame() (original) (raw)
Last Updated : 24 Dec, 2018
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas **Index.to_frame()**
function create a dataFrame from the given index with a column containing the Index. By default, the original Index is reused in the new dataframe. To reinforce a new index for the newly created dataframe, we set the index parameter of the function to be false.
Syntax: Index.to_frame(index=True)Parameters : index : Set the index of the returned DataFrame as the original Index.Returns : DataFrame containing the original Index data.
Example #1: Use Index.to_frame()
function to convert the index into a dataframe.
Python3 `
importing pandas as pd
import pandas as pd
Creating the index
idx = pd.Index(['Alice', 'Bob', 'Rachel', 'Tyler', 'Louis'], name ='Winners')
Print the Index
idx
`
Output : Let's convert the index into a dataframe.
Python3 `
convert the index into a dataframe
idx.to_frame()
`
Output : The function has converted the index into a dataframe. By default the function has created the index of the dataframe using the values of the original Index.Example #2: Use
Index.to_frame()
function to convert the index into a dataframe such that the dataframe created uses new index value.
Python3 `
importing pandas as pd
import pandas as pd
Creating the index
idx = pd.Index([22, 54, 85, 45, 69, 33])
Print the Index
idx
`
Output : Let's convert the index into a dataframe.
Python3 `
convert the index into a dataframe
idx.to_frame(index = False)
`
Output :