Python | Pandas MultiIndex.to_frame() (original) (raw)
Last Updated : 24 Dec, 2018
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas **MultiIndex.to_frame()**
function create a DataFrame with the levels of the MultiIndex as columns.
Syntax: MultiIndex.to_frame(index=True)
Parameters :
index : Set the index of the returned DataFrame as the original MultiIndex.Returns : DataFrame : a DataFrame containing the original MultiIndex data.
Example #1: Use MultiIndex.to_frame()
function to construct a dataframe using the MultiIndex levels as the column and index.
import
pandas as pd
midx
=
pd.MultiIndex.from_tuples([(
10
,
'Ten'
), (
10
,
'Twenty'
),
`` (
20
,
'Ten'
), (
20
,
'Twenty'
)],
`` names
=
[
'Num'
,
'Char'
])
print
(midx)
Output :
Now let’s construct the dataframe from the MultiIndex.
midx.to_frame(index
=
True
)
Output :
As we can see in the output, the function has constructed the Dataframe using the MultiIndex. Notice the index of the dataframe is constructed using the levels of the MultiIndex.
Example #2: Use MultiIndex.to_frame()
function to construct a DataFrame using the MultiIndex. Do not use the MultiIndex levels to construct the index of the Dataframe.
import
pandas as pd
midx
=
pd.MultiIndex.from_tuples([(
10
,
'Ten'
), (
10
,
'Twenty'
),
`` (
20
,
'Ten'
), (
20
,
'Twenty'
)],
`` names
=
[
'Num'
,
'Char'
])
print
(midx)
Output :
Now let’s create a dataframe using the midx MultiIndex.
midx.to_frame(index
=
False
)
Output :
As we can see in the output, the function has returned a DataFrame having different index value.