Python program to select Random value from list of lists (original) (raw)
Last Updated : 08 May, 2023
Given a list of lists. The task is to extract a random element from it.
Examples:
Input : test_list = [[4, 5, 5], [2, 7, 4], [8, 6, 3]] Output : 7 Explanation : Random number extracted from Matrix.
Input : test_list = [[4, 5, 5], [2, 7, 4], [8, 6, 3]], r_no = 2 Output : 6 Explanation : Random number extracted from 2nd row from Matrix.
Method #1: Using chain.from_iterable() + random.choice()
In this, we flatten the Matrix to list using from_iterable() and choice() is used to get a random number from the list.
Python3 `
Python3 code to demonstrate working of
Random Matrix Element
Using chain.from_iterables() + random.choice()
from itertools import chain import random
Initializing list
test_list = [[4, 5, 5], [2, 7, 4], [8, 6, 3]]
Printing original list
print("The original list is : " + str(test_list))
choice() for random number, from_iterables for flattening
res = random.choice(list(chain.from_iterable(test_list)))
Printing result
print("Random number from Matrix : " + str(res))
`
Output
The original list is : [[4, 5, 5], [2, 7, 4], [8, 6, 3]] Random number from Matrix : 6
Method #2 : Using choice() to get element from particular row
If a row is mentioned, the choice() method can be used to get a random element from that row.
Python3 `
Python3 code to demonstrate working of
Random Matrix Element
Using random.choice() [if row number given]
import random
initializing list
test_list = [[4, 5, 5], [2, 7, 4], [8, 6, 3]]
printing original list
print("The original list is : " + str(test_list))
initializing Row number
r_no = [0, 1, 2]
choice() for random number, from_iterables for flattening
res = random.choice(test_list[random.choice(r_no)])
printing result
print("Random number from Matrix Row : " + str(res))
`
Output
The original list is : [[4, 5, 5], [2, 7, 4], [8, 6, 3]] Random number from Matrix Row : 7
Method 3: Using the numpy package.
Approach:
- Import the numpy package.
- Initialize the 2D matrix using the numpy array() method.
- Use the numpy random.choice() method to generate a random number from the matrix.
- Print the result. Python3 `
import numpy as np import random
initializing list
test_list = [[4, 5, 5], [2, 7, 4], [8, 6, 3]]
printing original list
print("The original list is : " + str(test_list))
initializing Row number
r_no = [0, 1, 2]
Converting list to numpy array
arr = np.array(test_list)
Generating random number from matrix
using numpy random.choice() method
res = np.random.choice(arr[random.choice(r_no)])
Printing result
print("Random number from Matrix Row : " + str(res))
`
Output
The original list is : [[4, 5, 5], [2, 7, 4], [8, 6, 3]] Random number from Matrix Row : 7
Time Complexity: O(1)
Auxiliary Space: O(1)
Method 3 : Using list comprehension and random.sample()
Approach:
- Import the random module
- Initialize the list and print the original list
- Generate a random number for the row index using random.randint() method
- Use list comprehension to extract the row corresponding to the random index generated in step 3
- Use the random.sample() method to get a sample of elements from the row, with a sample size of 1.
- Get the randomly selected element from the sample and store it in a variable.
- Print the randomly selected element from the matrix row. Python3 `
import random
initializing list
test_list = [[4, 5, 5], [2, 7, 4], [8, 6, 3]]
printing original list
print("The original list is : " + str(test_list))
generating random row index
row_index = random.randint(0, len(test_list)-1)
extracting the row corresponding to the random index using list comprehension
row = [test_list[row_index][i] for i in range(len(test_list[row_index]))]
getting a sample of elements from the row using random.sample()
sample = random.sample(row, k=1)
getting the randomly selected element from the sample
res = sample[0]
printing result
print("Random number from Matrix Row : " + str(res))
`
Output
The original list is : [[4, 5, 5], [2, 7, 4], [8, 6, 3]] Random number from Matrix Row : 7
Time Complexity: O(n) - linear time complexity as we are traversing the matrix once using list comprehension to extract the row.
Auxiliary Space: O(n) - linear auxiliary space as we are creating a new list to store the extracted row.