Python | Pandas DataFrame.axes (original) (raw)

Last Updated : 20 Feb, 2019

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas. Pandas **DataFrame.axes** attribute access a group of rows and columns by label(s) or a boolean array in the given DataFrame.

Syntax: DataFrame.axesParameter : NoneReturns : list

Example #1: Use DataFrame.axes attribute to return a list containing the axes labels of the dataframe.

Python3 `

importing pandas as pd

import pandas as pd

Creating the DataFrame

df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71], 'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'], 'Age':[14, 25, 55, 8, 21]})

Create the index

index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']

Set the index

df.index = index_

Print the DataFrame

print(df)

`

Output : Now we will use DataFrame.axes attribute to return the axes labels of the dataframe.

Python3 1== `

return the axes labels of the dataframe

result = df.axes

Print the result

print(result)

`

Output : As we can see in the output, the DataFrame.axes attribute has successfully returned a list containing the axes labels of the dataframe.Example #2: Use DataFrame.axes attribute to return a list containing the axes labels of the dataframe.

Python3 `

importing pandas as pd

import pandas as pd

Creating the DataFrame

df = pd.DataFrame({"A":[12, 4, 5, None, 1], "B":[7, 2, 54, 3, None], "C":[20, 16, 11, 3, 8], "D":[14, 3, None, 2, 6]})

Create the index

index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']

Set the index

df.index = index_

Print the DataFrame

print(df)

`

Output : Now we will use DataFrame.axes attribute to return the axes labels of the dataframe.

Python3 1== `

return the axes labels of the dataframe

result = df.axes

Print the result

print(result)

`

Output : As we can see in the output, the DataFrame.axes attribute has successfully returned a list containing the axes labels of the dataframe.