Python | Pandas DataFrame.nlargest() (original) (raw)
Last Updated : 11 Jul, 2025
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas nlargest() method is used to get n largest values from a data frame or a series.
Syntax:
DataFrame.nlargest(n, columns, keep='first')
Parameters:
n: int, Number of values to selectcolumns: Column to check for values or user can select column while calling too. [For example: data["age"].nsmallest(3) OR data.nsmallest(3, "age")]keep: object to set which value to select if duplicates exit. Options are 'first' or 'last'
To download the CSV file used, Click Here.
Code #1: Extracting Largest 5 values In this example, Largest 5 values are extracted and then compared to the other sorted by the sort_values() function. NaN values are removed before trying this method. Refer sort_values and dropna() function.
Python 1== `
importing pandas package
import pandas as pd
making data frame from csv file
data = pd.read_csv("employees.csv")
removing null values
data.dropna(inplace = True)
extracting greatest 5
large5 = data.nlargest(5, "Salary")
display
large5
`
Output:
Code #2: Sorting by sort_values()
Python 1== `
importing pandas package
import pandas as pd
making data frame from csv file
data = pd.read_csv("employees.csv")
removing null values
data.dropna(inplace = True)
sorting in descending order
data.sort_values("Salary", ascending = False, inplace = True)
displaying top 5 values
data.head()
`
**Output:**As shown in the output image, the values returned by both functions is similar.