Random sampling in numpy | randint() function (original) (raw)

Last Updated : 26 Feb, 2019

numpy.random.randint() is one of the function for doing random sampling in numpy. It returns an array of specified shape and fills it with random integers from low (inclusive) to high (exclusive), i.e. in the interval [low, high).

Syntax : numpy.random.randint(low, high=None, size=None, dtype=’l’)

Parameters :
low : [int] Lowest (signed) integer to be drawn from the distribution.But, it works as a highest integer in the sample if high=None.
high : [int, optional] Largest (signed) integer to be drawn from the distribution.
size : [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.
dtype : [optional] Desired output data-type.

Return : Array of random integers in the interval [low, high) or a single such random int if size not provided.

Code #1 :

import numpy as geek

out_arr = geek.random.randint(low = 0 , high = 3 , size = 5 )

print ( "Output 1D Array filled with random integers : " , out_arr)

Output :

Output 1D Array filled with random integers : [1 1 0 1 1]

Code #2 :

import numpy as geek

out_arr = geek.random.randint(low = 4 , size = ( 2 , 3 ))

print ( "Output 2D Array filled with random integers : " , out_arr)

Output :

Output 2D Array filled with random integers : [[1 1 0] [1 0 3]]

Code #3 :

import numpy as geek

out_arr = geek.random.randint( 2 , 10 , ( 2 , 3 , 4 ))

print ( "Output 3D Array filled with random integers : " , out_arr)

Output :

Output 3D Array filled with random integers : [[[4 8 5 7] [6 5 6 7] [4 3 4 3]]

[[2 9 2 2] [3 2 2 3] [6 8 3 2]]]

Similar Reads

Introduction







Creating NumPy Array













NumPy Array Manipulation


















Matrix in NumPy


















Operations on NumPy Array




Reshaping NumPy Array















Indexing NumPy Array






Arithmetic operations on NumPyArray










Linear Algebra in NumPy Array