Segment Tree | Sum of given range (original) (raw)

Try it on GfG Practice redirect icon

Let us consider the following problem to understand Segment Trees.
We have an array arr[0 . . . n-1]. We should be able to

Sum of range using Nested Loop :

A simple solution is to run a loop from l to r and calculate the sum of elements in the given range. To update a value, simply do arr[i] = x. The first operation takes O(n) time and the second operation takes O(1) time.

Sum of range using Prefix Sum :

Another solution is to create another array and store the sum from start to i ,at the ith index in this array. The sum of a given range can now be calculated in O(1) time, but update operation takes O(n) time now. This works well if the number of query operations is large and very few updates.

Sum of range using Segment Tree :

The most efficient way is to use a segment tree, we can use a Segment Tree to do both operations in O(log(N)) time.

Representation of Segment trees

Construction of Segment Tree from the given array:

We start with a segment arr[0 . . . n-1]. and every time we divide the current segment into two (if it has not yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we store the sum in the corresponding node.
All levels of the constructed segment tree will be completely filled except the last level. Also, the tree will be a Full Binary Tree because we always divide segment in two, at every level. Since the constructed tree is always a full binary tree with n leaves, there will be n-1 internal nodes. So the total number of nodes will be 2*n - 1.

What is the height of the segment tree for a given array:

Height of the segment tree will be ⌈log₂N⌉. Since the tree is represented using array and relation between parent and child indexes must be maintained, size of memory allocated for segment tree will be (2 * 2⌈log2n⌉ - 1).

Query for Sum of a given range

Once the tree is constructed, how to get the sum using the constructed segment tree. The following is the algorithm to get the sum of elements.

int getSum(node, l, r) { if the range of the node is within l and r return value in the node else if the range of the node is completely outside l and r return 0 else return getSum(node's left child, l, r) + getSum(node's right child, l, r) }

In the above implementation, there are three cases we need to take into consideration

Update a value:

Like tree construction and query operations, the update can also be done recursively. We are given an index which needs to be updated. Let diff be the value to be added. We start from the root of the segment tree and add diff to all nodes which have given index in their range. If a node doesn't have a given index in its range, we don't make any changes to that node.

The algorithmic steps to implement a segment tree are:

Note: The implementation details, such as the type of aggregation and the way the midpoint is calculated, can vary based on the specific use case.

Example no1: Below is the implementation of the above approach:

C++ `

// C++ program to show segment tree operations like construction, query // and update #include <bits/stdc++.h> using namespace std;

// A utility function to get the middle index from corner indexes. int getMid(int s, int e) { return s + (e -s)/2; }

/* A recursive function to get the sum of values in the given range of the array. The following are parameters for this function.

st --> Pointer to segment tree 
si --> Index of current node in the segment tree. Initially 
        0 is passed as root is always at index 0 
ss & se --> Starting and ending indexes of the segment represented 
            by current node, i.e., st[si] 
qs & qe --> Starting and ending indexes of query range */

int getSumUtil(int *st, int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range, then return // the sum of the segment if (qs <= ss && qe >= se) return st[si];

// If segment of this node is outside the given range 
if (se < qs || ss > qe) 
    return 0; 

// If a part of this segment overlaps with the given range 
int mid = getMid(ss, se); 
return getSumUtil(st, ss, mid, qs, qe, 2*si+1) + 
    getSumUtil(st, mid+1, se, qs, qe, 2*si+2); 

}

/* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in the input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int *st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return;

// If the input index is in range of this node, then update 
// the value of the node and its children 
st[si] = st[si] + diff; 
if (se != ss) 
{ 
    int mid = getMid(ss, se); 
    updateValueUtil(st, ss, mid, i, diff, 2*si + 1); 
    updateValueUtil(st, mid+1, se, i, diff, 2*si + 2); 
} 

}

// The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree void updateValue(int arr[], int *st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n-1) { cout<<"Invalid Input"; return; }

// Get the difference between new value and old value 
int diff = new_val - arr[i]; 

// Update the value in array 
arr[i] = new_val; 

// Update the values of nodes in segment tree 
updateValueUtil(st, 0, n-1, i, diff, 0); 

}

// Return sum of elements in range from index qs (query start) // to qe (query end). It mainly uses getSumUtil() int getSum(int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { cout<<"Invalid Input"; return -1; }

return getSumUtil(st, 0, n-1, qs, qe, 0); 

}

// A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int arr[], int ss, int se, int *st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; }

// If there are more than one elements, then recur for left and 
// right subtrees and store the sum of values in this node 
int mid = getMid(ss, se); 
st[si] = constructSTUtil(arr, ss, mid, st, si*2+1) + 
        constructSTUtil(arr, mid+1, se, st, si*2+2); 
return st[si]; 

}

/* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST(int arr[], int n) { // Allocate memory for the segment tree

//Height of segment tree 
int x = (int)(ceil(log2(n))); 

//Maximum size of segment tree 
int max_size = 2*(int)pow(2, x) - 1; 

// Allocate memory 
int *st = new int[max_size]; 

// Fill the allocated memory st 
constructSTUtil(arr, 0, n-1, st, 0); 

// Return the constructed segment tree 
return st; 

}

// Driver program to test above functions int main() { int arr[] = {1, 3, 5, 7, 9, 11}; int n = sizeof(arr)/sizeof(arr[0]);

// Build segment tree from given array 
int *st = constructST(arr, n); 

// Print sum of values in array from index 1 to 3 
cout<<"Sum of values in given range = "<<getSum(st, n, 1, 3)<<endl; 

// Update: set arr[1] = 10 and update corresponding 
// segment tree nodes 
updateValue(arr, st, n, 1, 10); 

// Find sum after the value is updated 
cout<<"Updated sum of values in given range = "
        <<getSum(st, n, 1, 3)<<endl; 
return 0; 

} //This code is contributed by rathbhupendra

C

// C program to show segment tree operations like construction, query // and update #include <stdio.h> #include <math.h>

// A utility function to get the middle index from corner indexes. int getMid(int s, int e) { return s + (e -s)/2; }

/* A recursive function to get the sum of values in given range of the array. The following are parameters for this function.

st    --> Pointer to segment tree
si    --> Index of current node in the segment tree. Initially
          0 is passed as root is always at index 0
ss & se  --> Starting and ending indexes of the segment represented
             by current node, i.e., st[si]
qs & qe  --> Starting and ending indexes of query range */

int getSumUtil(int *st, int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range, then return // the sum of the segment if (qs <= ss && qe >= se) return st[si];

// If segment of this node is outside the given range
if (se < qs || ss > qe)
    return 0;

// If a part of this segment overlaps with the given range
int mid = getMid(ss, se);
return getSumUtil(st, ss, mid, qs, qe, 2*si+1) +
       getSumUtil(st, mid+1, se, qs, qe, 2*si+2);

}

/* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in the input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int *st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return;

// If the input index is in range of this node, then update 
// the value of the node and its children
st[si] = st[si] + diff;
if (se != ss)
{
    int mid = getMid(ss, se);
    updateValueUtil(st, ss, mid, i, diff, 2*si + 1);
    updateValueUtil(st, mid+1, se, i, diff, 2*si + 2);
}

}

// The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree void updateValue(int arr[], int *st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n-1) { printf("Invalid Input"); return; }

// Get the difference between new value and old value
int diff = new_val - arr[i];

// Update the value in array
arr[i] = new_val;

// Update the values of nodes in segment tree
updateValueUtil(st, 0, n-1, i, diff, 0);

}

// Return sum of elements in range from index qs (query start) // to qe (query end). It mainly uses getSumUtil() int getSum(int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { printf("Invalid Input"); return -1; }

return getSumUtil(st, 0, n-1, qs, qe, 0);

}

// A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int arr[], int ss, int se, int *st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; }

// If there are more than one elements, then recur for left and
// right subtrees and store the sum of values in this node
int mid = getMid(ss, se);
st[si] =  constructSTUtil(arr, ss, mid, st, si*2+1) +
          constructSTUtil(arr, mid+1, se, st, si*2+2);
return st[si];

}

/* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST(int arr[], int n) { // Allocate memory for the segment tree

//Height of segment tree
int x = (int)(ceil(log2(n))); 

//Maximum size of segment tree
int max_size = 2*(int)pow(2, x) - 1; 

// Allocate memory
int *st = new int[max_size];

// Fill the allocated memory st
constructSTUtil(arr, 0, n-1, st, 0);

// Return the constructed segment tree
return st;

}

// Driver program to test above functions int main() { int arr[] = {1, 3, 5, 7, 9, 11}; int n = sizeof(arr)/sizeof(arr[0]);

// Build segment tree from given array
int *st = constructST(arr, n);

// Print sum of values in array from index 1 to 3
printf("Sum of values in given range = %dn", 
        getSum(st, n, 1, 3));

// Update: set arr[1] = 10 and update corresponding 
// segment tree nodes
updateValue(arr, st, n, 1, 10);

// Find sum after the value is updated
printf("Updated sum of values in given range = %dn",
         getSum(st, n, 1, 3));
return 0;

}

Java

// Java Program to show segment tree operations like construction, // query and update import java.io.*; public class SegmentTree { int st[]; // The array that stores segment tree nodes

/* Constructor to construct segment tree from given array. This
   constructor  allocates memory for segment tree and calls
   constructSTUtil() to  fill the allocated memory */
SegmentTree(int arr[], int n)
{
    // Allocate memory for segment tree
    //Height of segment tree
    int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));

    //Maximum size of segment tree
    int max_size = 2 * (int) Math.pow(2, x) - 1;

    st = new int[max_size]; // Memory allocation

    constructSTUtil(arr, 0, n - 1, 0);
}

// A utility function to get the middle index from corner indexes.
int getMid(int s, int e) {
    return s + (e - s) / 2;
}

/*  A recursive function to get the sum of values in given range
    of the array.  The following are parameters for this function.

  st    --> Pointer to segment tree
  si    --> Index of current node in the segment tree. Initially
            0 is passed as root is always at index 0
  ss & se  --> Starting and ending indexes of the segment represented
                by current node, i.e., st[si]
  qs & qe  --> Starting and ending indexes of query range */
int getSumUtil(int ss, int se, int qs, int qe, int si)
{
    // If segment of this node is a part of given range, then return
    // the sum of the segment
    if (qs <= ss && qe >= se)
        return st[si];

    // If segment of this node is outside the given range
    if (se < qs || ss > qe)
        return 0;

    // If a part of this segment overlaps with the given range
    int mid = getMid(ss, se);
    return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
            getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}

/* A recursive function to update the nodes which have the given 
   index in their range. The following are parameters
    st, si, ss and se are same as getSumUtil()
    i    --> index of the element to be updated. This index is in
             input array.
   diff --> Value to be added to all nodes which have i in range */
void updateValueUtil(int ss, int se, int i, int diff, int si)
{
    // Base Case: If the input index lies outside the range of 
    // this segment
    if (i < ss || i > se)
        return;

    // If the input index is in range of this node, then update the
    // value of the node and its children
    st[si] = st[si] + diff;
    if (se != ss) {
        int mid = getMid(ss, se);
        updateValueUtil(ss, mid, i, diff, 2 * si + 1);
        updateValueUtil(mid + 1, se, i, diff, 2 * si + 2);
    }
}

// The function to update a value in input array and segment tree.

// It uses updateValueUtil() to update the value in segment tree void updateValue(int arr[], int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { System.out.println("Invalid Input"); return; }

    // Get the difference between new value and old value
    int diff = new_val - arr[i];

    // Update the value in array
    arr[i] = new_val;

    // Update the values of nodes in segment tree
    updateValueUtil(0, n - 1, i, diff, 0);
}

// Return sum of elements in range from index qs (query start) to

// qe (query end). It mainly uses getSumUtil() int getSum(int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { System.out.println("Invalid Input"); return -1; } return getSumUtil(0, n - 1, qs, qe, 0); }

// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
int constructSTUtil(int arr[], int ss, int se, int si)
{
    // If there is one element in array, store it in current node of
    // segment tree and return
    if (ss == se) {
        st[si] = arr[ss];
        return arr[ss];
    }

    // If there are more than one elements, then recur for left and
    // right subtrees and store the sum of values in this node
    int mid = getMid(ss, se);
    st[si] = constructSTUtil(arr, ss, mid, si * 2 + 1) +
             constructSTUtil(arr, mid + 1, se, si * 2 + 2);
    return st[si];
}

// Driver program to test above functions
public static void main(String args[])
{
    int arr[] = {1, 3, 5, 7, 9, 11};
    int n = arr.length;
    SegmentTree  tree = new SegmentTree(arr, n);

    // Build segment tree from given array

    // Print sum of values in array from index 1 to 3
    System.out.println("Sum of values in given range = " +
                       tree.getSum(n, 1, 3));

    // Update: set arr[1] = 10 and update corresponding segment
    // tree nodes
    tree.updateValue(arr, n, 1, 10);

    // Find sum after the value is updated
    System.out.println("Updated sum of values in given range = " +
            tree.getSum(n, 1, 3));
}

} //This code is contributed by Ankur Narain Verma

Python3

Python3 program to show segment tree operations like

construction, query and update

from math import ceil, log2;

A utility function to get the

middle index from corner indexes.

def getMid(s, e) : return s + (e -s) // 2;

""" A recursive function to get the sum of values in the given range of the array. The following are parameters for this function.

st --> Pointer to segment tree 
si --> Index of current node in the segment tree. 
       Initially 0 is passed as root is always at index 0 
ss & se --> Starting and ending indexes of the segment
            represented by current node, i.e., st[si] 
qs & qe --> Starting and ending indexes of query range """

def getSumUtil(st, ss, se, qs, qe, si) :

# If segment of this node is a part of given range, 
# then return the sum of the segment 
if (qs <= ss and qe >= se) :
    return st[si]; 

# If segment of this node is
# outside the given range 
if (se < qs or ss > qe) :
    return 0; 

# If a part of this segment overlaps 
# with the given range 
mid = getMid(ss, se); 

return (getSumUtil(st, ss, mid, qs, qe, 2 * si + 1) + 
       getSumUtil(st, mid + 1, se, qs, qe, 2 * si + 2)); 

""" A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in the input array. diff --> Value to be added to all nodes which have i in range """ def updateValueUtil(st, ss, se, i, diff, si) :

# Base Case: If the input index lies 
# outside the range of this segment 
if (i < ss or i > se) :
    return; 

# If the input index is in range of this node, 
# then update the value of the node and its children 
st[si] = st[si] + diff; 

if (se != ss) :

    mid = getMid(ss, se); 
    updateValueUtil(st, ss, mid, i, 
                    diff, 2 * si + 1); 
    updateValueUtil(st, mid + 1, se, i, 
                     diff, 2 * si + 2); 

The function to update a value in input array

and segment tree. It uses updateValueUtil()

to update the value in segment tree

def updateValue(arr, st, n, i, new_val) :

# Check for erroneous input index 
if (i < 0 or i > n - 1) :
    
    print("Invalid Input", end = ""); 
    return; 

# Get the difference between 
# new value and old value 
diff = new_val - arr[i]; 

# Update the value in array 
arr[i] = new_val; 

# Update the values of nodes in segment tree 
updateValueUtil(st, 0, n - 1, i, diff, 0); 

Return sum of elements in range from

index qs (query start) to qe (query end).

It mainly uses getSumUtil()

def getSum(st, n, qs, qe) :

# Check for erroneous input values 
if (qs < 0 or qe > n - 1 or qs > qe) :

    print("Invalid Input", end = ""); 
    return -1; 

return getSumUtil(st, 0, n - 1, qs, qe, 0); 

A recursive function that constructs

Segment Tree for array[ss..se].

si is index of current node in segment tree st

def constructSTUtil(arr, ss, se, st, si) :

# If there is one element in array, 
# store it in current node of 
# segment tree and return 
if (ss == se) :

    st[si] = arr[ss]; 
    return arr[ss]; 

# If there are more than one elements, 
# then recur for left and right subtrees 
# and store the sum of values in this node 
mid = getMid(ss, se); 

st[si] = (constructSTUtil(arr, ss, mid, st, si * 2 + 1) +
         constructSTUtil(arr, mid + 1, se, st, si * 2 + 2)); 

return st[si]; 

""" Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory """ def constructST(arr, n) :

# Allocate memory for the segment tree 

# Height of segment tree 
x = (int)(ceil(log2(n))); 

# Maximum size of segment tree 
max_size = 2 * (int)(2**x) - 1;

# Allocate memory
st = [0] * max_size; 

# Fill the allocated memory st 
constructSTUtil(arr, 0, n - 1, st, 0); 

# Return the constructed segment tree 
return st; 

Driver Code

if name == "main" :

arr = [1, 3, 5, 7, 9, 11]; 
n = len(arr); 

# Build segment tree from given array 
st = constructST(arr, n); 

# Print sum of values in array from index 1 to 3 
print("Sum of values in given range = ",
                   getSum(st, n, 1, 3)); 

# Update: set arr[1] = 10 and update 
# corresponding segment tree nodes 
updateValue(arr, st, n, 1, 10); 

# Find sum after the value is updated 
print("Updated sum of values in given range = ",
                 getSum(st, n, 1, 3), end = ""); 

This code is contributed by AnkitRai01

C#

// C# Program to show segment tree // operations like construction, // query and update using System;

class SegmentTree { int []st; // The array that stores segment tree nodes

/* Constructor to construct segment 
tree from given array. This constructor
allocates memory for segment tree and calls
constructSTUtil() to fill the allocated memory */
SegmentTree(int []arr, int n)
{
    // Allocate memory for segment tree
    //Height of segment tree
    int x = (int) (Math.Ceiling(Math.Log(n) / Math.Log(2)));

    //Maximum size of segment tree
    int max_size = 2 * (int) Math.Pow(2, x) - 1;

    st = new int[max_size]; // Memory allocation

    constructSTUtil(arr, 0, n - 1, 0);
}

// A utility function to get the 
// middle index from corner indexes.
int getMid(int s, int e) 
{
    return s + (e - s) / 2;
}

/* A recursive function to get 
the sum of values in given range
    of the array. The following 
    are parameters for this function.

st --> Pointer to segment tree
si --> Index of current node in the 
        segment tree. Initially
            0 is passed as root is
            always at index 0
ss & se --> Starting and ending indexes 
                of the segment represented
                by current node, i.e., st[si]
qs & qe --> Starting and ending indexes of query range */
int getSumUtil(int ss, int se, int qs, int qe, int si)
{
    // If segment of this node is a part
    // of given range, then return
    // the sum of the segment
    if (qs <= ss && qe >= se)
        return st[si];

    // If segment of this node is 
    // outside the given range
    if (se < qs || ss > qe)
        return 0;

    // If a part of this segment 
    // overlaps with the given range
    int mid = getMid(ss, se);
    return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
            getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}

/* A recursive function to update 
the nodes which have the given 
index in their range. The following 
are parameters st, si, ss and se 
are same as getSumUtil() i --> index
of the element to be updated. This 
index is in input array. diff --> Value
to be added to all nodes which have i in range */
void updateValueUtil(int ss, int se, int i,
                            int diff, int si)
{
    // Base Case: If the input index 
    // lies outside the range of this segment
    if (i < ss || i > se)
        return;

    // If the input index is in range of 
    // this node, then update the value
    // of the node and its children
    st[si] = st[si] + diff;
    if (se != ss) 
    {
        int mid = getMid(ss, se);
        updateValueUtil(ss, mid, i, diff, 2 * si + 1);
        updateValueUtil(mid + 1, se, i, diff, 2 * si + 2);
    }
}

// The function to update a value
// in input array and segment tree.
// It uses updateValueUtil() to 
// update the value in segment tree
void updateValue(int []arr, int n, int i, int new_val)
{
    // Check for erroneous input index
    if (i < 0 || i > n - 1)
    {
        Console.WriteLine("Invalid Input");
        return;
    }

    // Get the difference between
    // new value and old value
    int diff = new_val - arr[i];
    
    // Update the value in array
    arr[i] = new_val;

    // Update the values of nodes in segment tree
    updateValueUtil(0, n - 1, i, diff, 0);
}

// Return sum of elements in range 
// from index qs (query start) to
// qe (query end). It mainly uses getSumUtil()
int getSum(int n, int qs, int qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe) 
    {
        Console.WriteLine("Invalid Input");
        return -1;
    }
    return getSumUtil(0, n - 1, qs, qe, 0);
}

// A recursive function that constructs
// Segment Tree for array[ss..se].
// si is index of current node in segment tree st
int constructSTUtil(int []arr, int ss, int se, int si)
{
    // If there is one element in array, 
    // store it in current node of
    // segment tree and return
    if (ss == se) {
        st[si] = arr[ss];
        return arr[ss];
    }

    // If there are more than one elements, 
    // then recur for left and right subtrees
    // and store the sum of values in this node
    int mid = getMid(ss, se);
    st[si] = constructSTUtil(arr, ss, mid, si * 2 + 1) +
            constructSTUtil(arr, mid + 1, se, si * 2 + 2);
    return st[si];
}

// Driver code
public static void Main()
{
    int []arr = {1, 3, 5, 7, 9, 11};
    int n = arr.Length;
    SegmentTree tree = new SegmentTree(arr, n);

    // Build segment tree from given array

    // Print sum of values in array from index 1 to 3
    Console.WriteLine("Sum of values in given range = " +
                                    tree.getSum(n, 1, 3));

    // Update: set arr[1] = 10 and update 
    // corresponding segment tree nodes
    tree.updateValue(arr, n, 1, 10);

    // Find sum after the value is updated
    Console.WriteLine("Updated sum of values in given range = " +
            tree.getSum(n, 1, 3));
}

}

/* This code contributed by PrinciRaj1992 */

JavaScript

`

Output

Sum of values in given range = 15 Updated sum of values in given range = 22

Time complexity: O(N*log(N))
Auxiliary Space: O(N)

Example no2:

Java code to implement a segment tree:

C++ `

#include <bits/stdc++.h>

using namespace std;

class SegmentTree { vector tree; int size;

public: SegmentTree(vector& array) { size = array.size(); tree.resize(4 * size); buildTree(array, 0, 0, size - 1); }

private: void buildTree(vector& array, int treeIndex, int left, int right) { if (left == right) { tree[treeIndex] = array[left]; return; } int mid = left + (right - left) / 2; buildTree(array, 2 * treeIndex + 1, left, mid); buildTree(array, 2 * treeIndex + 2, mid + 1, right); tree[treeIndex] = min(tree[2 * treeIndex + 1], tree[2 * treeIndex + 2]); }

int query(int treeIndex, int left, int right, int queryLeft, int queryRight) {
    if (queryLeft <= left && right <= queryRight)
        return tree[treeIndex];
    int mid = left + (right - left) / 2;
    int minValue = INT_MAX;
    if (queryLeft <= mid)
        minValue = min(minValue, query(2 * treeIndex + 1, left, mid, queryLeft, queryRight));
    if (queryRight > mid)
        minValue = min(minValue, query(2 * treeIndex + 2, mid + 1, right, queryLeft, queryRight));
    return minValue;
}

public: int query(int left, int right) { return query(0, 0, size - 1, left, right); } };

int main() { vector array = {1, 3, 2, 5, 4, 6}; SegmentTree st(array); cout << st.query(1, 5) << endl; // 2 return 0; }

Java

import java.util.Arrays;

class SegmentTree { int[] tree; int size;

SegmentTree(int[] array) {
    size = array.length;
    tree = new int[4 * size];
    buildTree(array, 0, 0, size - 1);
}

private void buildTree(int[] array, int treeIndex, int left, int right) {
    if (left == right) {
        tree[treeIndex] = array[left];
        return;
    }
    int mid = left + (right - left) / 2;
    buildTree(array, 2 * treeIndex + 1, left, mid);
    buildTree(array, 2 * treeIndex + 2, mid + 1, right);
    tree[treeIndex] = Math.min(tree[2 * treeIndex + 1], tree[2 * treeIndex + 2]);
}

private int query(int treeIndex, int left, int right, int queryLeft, int queryRight) {
    if (queryLeft <= left && right <= queryRight)
        return tree[treeIndex];
    int mid = left + (right - left) / 2;
    int minValue = Integer.MAX_VALUE;
    if (queryLeft <= mid)
        minValue = Math.min(minValue, query(2 * treeIndex + 1, left, mid, queryLeft, queryRight));
    if (queryRight > mid)
        minValue = Math.min(minValue, query(2 * treeIndex + 2, mid + 1, right, queryLeft, queryRight));
    return minValue;
}

int query(int left, int right) {
    return query(0, 0, size - 1, left, right);
}

}

public class Main { public static void main(String[] args) { int[] array = {1, 3, 2, 5, 4, 6}; SegmentTree st = new SegmentTree(array); System.out.println(st.query(1, 5)); // 2 } }

Python3

class SegmentTree: def init(self, array): self.size = len(array) self.tree = [0] * (4 * self.size) self.build_tree(array, 0, 0, self.size - 1)

def build_tree(self, array, tree_index, left, right):
    if left == right:
        self.tree[tree_index] = array[left]
        return
    mid = (left + right) // 2
    self.build_tree(array, 2 * tree_index + 1, left, mid)
    self.build_tree(array, 2 * tree_index + 2, mid + 1, right)
    self.tree[tree_index] = min(self.tree[2 * tree_index + 1], self.tree[2 * tree_index + 2])

def query(self, tree_index, left, right, query_left, query_right):
    if query_left <= left and right <= query_right:
        return self.tree[tree_index]
    mid = (left + right) // 2
    min_value = float('inf')
    if query_left <= mid:
        min_value = min(min_value, self.query(2 * tree_index + 1, left, mid, query_left, query_right))
    if query_right > mid:
        min_value = min(min_value, self.query(2 * tree_index + 2, mid + 1, right, query_left, query_right))
    return min_value

def query_range(self, left, right):
    return self.query(0, 0, self.size - 1, left, right)

if name == 'main': array = [1, 3, 2, 5, 4, 6] st = SegmentTree(array) print(st.query_range(1, 5)) # 2

C#

// Import necessary libraries using System; using System.Collections.Generic;

// Define the SegmentTree class public class SegmentTree {

// Define private variables private List tree; private int size; // Define the constructor method public SegmentTree(List array) {

// Initialize size variable
size = array.Count;

// Initialize tree list
tree = new List<int>(4 * size);
for (int i = 0; i < 4 * size; i++) {
  tree.Add(0);
}

// Build the tree
BuildTree(array, 0, 0, size - 1);

}

// Define the private BuildTree method private void BuildTree(List array, int treeIndex, int left, int right) { // Base case: if left and right pointers are equal, // assign the value of that index of array to the // corresponding index of tree if (left == right) { tree[treeIndex] = array[left]; return; }

// Recursive case: find mid point, and recursively
// build left and right subtrees
int mid = left + (right - left) / 2;
BuildTree(array, 2 * treeIndex + 1, left, mid);
BuildTree(array, 2 * treeIndex + 2, mid + 1, right);

// Assign minimum value of left and right subtrees
// to current index of tree
tree[treeIndex] = Math.Min(tree[2 * treeIndex + 1],
                           tree[2 * treeIndex + 2]);

}

// Define the private Query method private int Query(int treeIndex, int left, int right, int queryLeft, int queryRight) {

// Base case: if the query range completely covers
// the range of current index of tree, return the
// value of that index of tree
if (queryLeft <= left && right <= queryRight) {
  return tree[treeIndex];
}

// Recursive case: find mid point, and recursively
// search in left and/or right subtrees
int mid = left + (right - left) / 2;
int minValue = int.MaxValue;
if (queryLeft <= mid) {
  minValue = Math.Min(minValue,
                      Query(2 * treeIndex + 1,
                            left, mid, queryLeft,
                            queryRight));
}
if (queryRight > mid) {
  minValue = Math.Min(
    minValue,
    Query(2 * treeIndex + 2, mid + 1, right,
          queryLeft, queryRight));
}
return minValue;

}

// Define the public Query method public int Query(int left, int right) { return Query(0, 0, size - 1, left, right); } }

// Define the main class class Program {

// Define the Main method static void Main(string[] args) {

// Initialize array and SegmentTree instance
List<int> array
  = new List<int>() { 1, 3, 2, 5, 4, 6 };
SegmentTree st = new SegmentTree(array);

// Print query result
Console.WriteLine(st.Query(1, 5)); // 2

} }

JavaScript

class SegmentTree { constructor(array) { this.tree = []; this.size = array.length; this.buildTree(array, 0, 0, this.size - 1); }

buildTree(array, treeIndex, left, right) { if (left === right) { this.tree[treeIndex] = array[left]; return; }

const mid = left + Math.floor((right - left) / 2);
this.buildTree(array, 2 * treeIndex + 1, left, mid);
this.buildTree(array, 2 * treeIndex + 2, mid + 1, right);
this.tree[treeIndex] = Math.min(
  this.tree[2 * treeIndex + 1],
  this.tree[2 * treeIndex + 2]
);

}

Query(treeIndex, left, right, queryLeft, queryRight) { if (queryLeft <= left && right <= queryRight) return this.tree[treeIndex];

const mid = left + Math.floor((right - left) / 2);
let minValue = Infinity;

if (queryLeft <= mid)
  minValue = Math.min(
    minValue,
    this.Query(2 * treeIndex + 1, left, mid, queryLeft, queryRight)
  );

if (queryRight > mid)
  minValue = Math.min(
    minValue,
    this.Query(2 * treeIndex + 2, mid + 1, right, queryLeft, queryRight)
  );

return minValue;

}

query(left, right) { return this.Query(0, 0, this.size - 1, left, right); } }

const array = [1, 3, 2, 5, 4, 6]; const st = new SegmentTree(array); console.log(st.query(1, 5)); // 2

`

Benifits of segment tree usage:

Segment Tree | Set 2 (Range Minimum Query)