Selecting rows in pandas DataFrame based on conditions (original) (raw)
Last Updated : 07 Aug, 2024
Let’s see how to Select rows based on some conditions in Pandas DataFrame.
Selecting rows based on particular column value using '>', '=', '=', '<=', '!='
operator.
Code #1 : Selecting all the rows from the given dataframe in which ‘Percentage’ is greater than 80 using basic method.
Python `
importing pandas
import pandas as pd
record = {
'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ], 'Age': [21, 19, 20, 18, 17, 21], 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'], 'Percentage': [88, 92, 95, 70, 65, 78] }
create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
print("Given Dataframe :\n", dataframe)
selecting rows based on condition
rslt_df = dataframe[dataframe['Percentage'] > 80]
print('\nResult dataframe :\n', rslt_df)
`
**Output :
Code #2 : Selecting all the rows from the given dataframe in which ‘Percentage’ is greater than 80 using loc.
Output :
Code #3 : Selecting all the rows from the given dataframe in which ‘Percentage’ is not equal to 95 using Loc.
Python `
importing pandas
import pandas as pd
record = { 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ], 'Age': [21, 19, 20, 18, 17, 21], 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'], 'Percentage': [88, 92, 95, 70, 65, 78]}
create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
print("Given Dataframe :\n", dataframe)
selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Percentage'] != 95]
print('\nResult dataframe :\n', rslt_df)
`
Output :
Selecting those rows whose column value is present in the list using isin() method of the dataframe.
Code #1 : Selecting all the rows from the given dataframe in which ‘Stream’ is present in the options list using basic method.
Python `
importing pandas
import pandas as pd
record = { 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ], 'Age': [21, 19, 20, 18, 17, 21], 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'], 'Percentage': [88, 92, 95, 70, 65, 78]}
create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
print("Given Dataframe :\n", dataframe)
options = ['Math', 'Commerce']
selecting rows based on condition
rslt_df = dataframe[dataframe['Stream'].isin(options)]
print('\nResult dataframe :\n', rslt_df)
`
Output :
Code #2 :
Selecting all the rows from the given dataframe in which ‘Stream’ is present in the options list using .loc[].
Python `
importing pandas
import pandas as pd
record = { 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ], 'Age': [21, 19, 20, 18, 17, 21], 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'], 'Percentage': [88, 92, 95, 70, 65, 78]}
create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
print("Given Dataframe :\n", dataframe)
options = ['Math', 'Commerce']
selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Stream'].isin(options)]
print('\nResult dataframe :\n', rslt_df)
`
Output :
Code #3 : Selecting all the rows from the given dataframe in which ‘Stream’ is not present in the options list using .loc[] .
Python `
importing pandas
import pandas as pd
record = { 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ], 'Age': [21, 19, 20, 18, 17, 21], 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'], 'Percentage': [88, 92, 95, 70, 65, 78]}
create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
print("Given Dataframe :\n", dataframe)
options = ['Math', 'Science']
selecting rows based on condition
rslt_df = dataframe.loc[~dataframe['Stream'].isin(options)]
print('\nresult dataframe :\n', rslt_df)
`
Output :
Selecting rows based on multiple column conditions using '&'
operator.
Code #1 : Selecting all the rows from the given dataframe in which ‘Age’ is equal to 21 and ‘Stream’ is present in the options list using basic method.
Python `
importing pandas
import pandas as pd
record = { 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ], 'Age': [21, 19, 20, 18, 17, 21], 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'], 'Percentage': [88, 92, 95, 70, 65, 78]}
create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
print("Given Dataframe :\n", dataframe)
options = ['Math', 'Science']
selecting rows based on condition
rslt_df = dataframe[(dataframe['Age'] == 21) & dataframe['Stream'].isin(options)]
print('\nResult dataframe :\n', rslt_df)
`
Output :
Code #2 :
Selecting all the rows from the given dataframe in which ‘Age’ is equal to 21 and ‘Stream’ is present in the options list using .loc[].
Python `
importing pandas
import pandas as pd
record = { 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ], 'Age': [21, 19, 20, 18, 17, 21], 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'], 'Percentage': [88, 92, 95, 70, 65, 78]}
create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
print("Given Dataframe :\n", dataframe)
options = ['Math', 'Science']
selecting rows based on condition
rslt_df = dataframe.loc[(dataframe['Age'] == 21) & dataframe['Stream'].isin(options)]
print('\nResult dataframe :\n', rslt_df)
`
Output :