David Anderson - Confluent | LinkedIn (original) (raw)

About

My career to date, in three chapters:

Chapter 1: system developer and researcher…

Activity

Experience & Education

View David’s full experience

See their title, tenure and more.

Publications

AAAI 2000

Scheduling, routing, and layout tasks are examples of hard operations-research problems that have broad application in industry. Typical algorithms for these problems combine some form of gradient descent to find local minima with some strategy for escaping nonoptimal local minima. Our idea is to divide these two subtasks cleanly between human and computer: in our paradigm of human-guided simple search the computer is responsible only for finding local minima using a simple hill-climbing…
Scheduling, routing, and layout tasks are examples of hard operations-research problems that have broad application in industry. Typical algorithms for these problems combine some form of gradient descent to find local minima with some strategy for escaping nonoptimal local minima. Our idea is to divide these two subtasks cleanly between human and computer: in our paradigm of human-guided simple search the computer is responsible only for finding local minima using a simple hill-climbing search; using visualization and interaction techniques, the human user identifies promising regions of the search space for the computer to explore, and intervenes to help it escape nonoptimal local minima. We have applied our approach to the problem of capacitated vehicle routing with time windows, a commercially important problem with a rich research history. Despite its simplicity, our prototype system is competitive with the majority of previously reported systems on benchmark academic p...
Other authors
See publication

SIGGRAPH 2000

Construction toys are a superb medium for geometric models. We argue that such toys, suitably instrumented or sensed, could be the inspiration for a new generation of easy-to-use, tangible modeling systems—especially if the tangible modeling is combined with graphical-interpretation techniques for enhancing nascent models automatically. The three key technologies needed to realize this idea are embedded computation, vision-based acquisition, and graphical interpretation. We sample these…
Construction toys are a superb medium for geometric models. We argue that such toys, suitably instrumented or sensed, could be the inspiration for a new generation of easy-to-use, tangible modeling systems—especially if the tangible modeling is combined with graphical-interpretation techniques for enhancing nascent models automatically. The three key technologies needed to realize this idea are embedded computation, vision-based acquisition, and graphical interpretation. We sample these technologies in the context of two novel modeling systems: physical building blocks that self-describe, interpret, and decorate the structures into which they are assembled; and a system for scanning, interpreting, and animating clay figures.
Other authors
See publication

Patents

Languages

Native or bilingual proficiency

Native or bilingual proficiency

Elementary proficiency

Elementary proficiency

Recommendations received

More activity by David

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named David Anderson in United States

6563 others named David Anderson in United States are on LinkedIn

See others named David Anderson

Add new skills with these courses