David Anderson - Confluent | LinkedIn (original) (raw)
About
My career to date, in three chapters:
Chapter 1: system developer and researcher…
Activity
Experience & Education
Confluent
View David’s full experience
See their title, tenure and more.
Publications
AAAI 2000
Scheduling, routing, and layout tasks are examples of hard operations-research problems that have broad application in industry. Typical algorithms for these problems combine some form of gradient descent to find local minima with some strategy for escaping nonoptimal local minima. Our idea is to divide these two subtasks cleanly between human and computer: in our paradigm of human-guided simple search the computer is responsible only for finding local minima using a simple hill-climbing…
Scheduling, routing, and layout tasks are examples of hard operations-research problems that have broad application in industry. Typical algorithms for these problems combine some form of gradient descent to find local minima with some strategy for escaping nonoptimal local minima. Our idea is to divide these two subtasks cleanly between human and computer: in our paradigm of human-guided simple search the computer is responsible only for finding local minima using a simple hill-climbing search; using visualization and interaction techniques, the human user identifies promising regions of the search space for the computer to explore, and intervenes to help it escape nonoptimal local minima. We have applied our approach to the problem of capacitated vehicle routing with time windows, a commercially important problem with a rich research history. Despite its simplicity, our prototype system is competitive with the majority of previously reported systems on benchmark academic p...
Other authors
See publication
SIGGRAPH 2000
Construction toys are a superb medium for geometric models. We argue that such toys, suitably instrumented or sensed, could be the inspiration for a new generation of easy-to-use, tangible modeling systems—especially if the tangible modeling is combined with graphical-interpretation techniques for enhancing nascent models automatically. The three key technologies needed to realize this idea are embedded computation, vision-based acquisition, and graphical interpretation. We sample these…
Construction toys are a superb medium for geometric models. We argue that such toys, suitably instrumented or sensed, could be the inspiration for a new generation of easy-to-use, tangible modeling systems—especially if the tangible modeling is combined with graphical-interpretation techniques for enhancing nascent models automatically. The three key technologies needed to realize this idea are embedded computation, vision-based acquisition, and graphical interpretation. We sample these technologies in the context of two novel modeling systems: physical building blocks that self-describe, interpret, and decorate the structures into which they are assembled; and a system for scanning, interpreting, and animating clay figures.
Other authors
See publication
Patents
Languages
English
Native or bilingual proficiency
French
Native or bilingual proficiency
Spanish
Elementary proficiency
German
Elementary proficiency
Recommendations received
More activity by David
Other similar profiles
Explore collaborative articles
We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.
Others named David Anderson in United States
6563 others named David Anderson in United States are on LinkedIn
See others named David Anderson