Evidence for an additional planet in the β Pictoris system (original) (raw)

Data availability

The HARPS spectra are available in the ESO archive, and the measured RV data are given in Supplementary Table 1.

Code availability

The codes used for this paper are available from the corresponding author upon reasonable request.

References

  1. Baruteau, C., Bai, X., Mordasini, C. & Mollière, P. Formation, orbital and internal evolutions of young planetary systems. Space Sci. Rev. 205, 77–124 (2016).
    Article ADS Google Scholar
  2. Smith, B. A. & Terrile, R. J. A circumstellar disk around β Pictoris. Science 226, 1421–1424 (1984).
    Article ADS Google Scholar
  3. Augereau, J. C., Nelson, R. P., Lagrange, A.-M., Papaloizou, J. C. B. & Mouillet, D. Dynamical modeling of large-scale asymmetries in the β Pictoris dust disk. Astron. Astrophys. 370, 447–455 (2001).
    Article ADS Google Scholar
  4. Dent, W. et al. Molecular gas clumps from the destruction of icy bodies in the β Pictoris debris disk. Science 383, 1490–1492 (2014).
    Article ADS Google Scholar
  5. Kiefer, F. et al. Two families of exocomets in the β Pictoris system. Nature 514, 462–464 (2014).
    Article ADS Google Scholar
  6. Lagrange, A.-M. A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L′-band imaging. Astron. Astrophys. 493, L21–L25 (2009).
    Article ADS Google Scholar
  7. Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star β Pictoris. Science 328, 57–59 (2010).
    Article ADS Google Scholar
  8. Mouillet, D., Larwood, J. D., Papaloizou, J. C. B. & Lagrange, A.-M. A planet on an inclined orbit as an explanation of the warp in the β Pictoris disc. Mon. Not. R. Astron. Soc. 292, 896–904 (1997).
    Article ADS Google Scholar
  9. Nesvold, E., Kuchner, M. J. & SMACK, A. Model of colliding planetesimals in the β Pictoris debris disk. Astrophys. J. 798, 83–100 (2015).
    Article ADS Google Scholar
  10. Beust, H. & Morbidelli, A. Falling evaporating bodies as a clue to outline the structure of the β Pictoris young planetary system. Icarus 143, 170–188 (2000).
    Article ADS Google Scholar
  11. Telesco, C. M. et al. Mid-infrared images of β Pictoris and the possible role of planetesimal collisions in the central disk. Nature 433, 133–136 (2005).
    Article ADS Google Scholar
  12. Okamoto, Y. K. et al. An early extrasolar planetary system revealed by planetesimal belts in β Pictoris. Nature 431, 660–662 (2004).
    Article ADS Google Scholar
  13. Wahhaj, Z. et al. The inner rings of β Pictoris. Astrophys. J. 584, L27–L32 (2003).
    Article ADS Google Scholar
  14. Lagage, P. O. & Pantin, E. Dust depletion in the inner disk of β Pictoris as a possible indicator of planets. Nature 369, 628–630 (1994).
    Article ADS Google Scholar
  15. Lagrange, A.-M. et al. Full exploration of the giant planet population around β Pictoris. Astron. Astrophys. 612, 108–112 (2018).
    Article Google Scholar
  16. Lagrange, A.-M. et al. Constraints on planets around β Pic with Harps radial velocity data. Astron. Astrophys. 542, A18–A23 (2012).
    Article Google Scholar
  17. Bonnefoy, M. et al. Physical and orbital properties of β Pictoris b. Astron. Astrophys. 567, L9–L14 (2014).
    Article ADS Google Scholar
  18. Koen, C. δ Scuti pulsations in β Pictoris. Mon. Not. R. Astron. Soc. 341, 1385–1387 (2003).
    Article ADS Google Scholar
  19. Koen, C. et al. Pulsations in β Pictoris. Mon. Not. R. Astron. Soc. 344, 1250–1256 (2003).
    Article ADS Google Scholar
  20. Mekarnia, D. et al. The δ Scuti pulsations of β Pictoris as observed by ASTEP from Antarctica. Astron. Astrophys. 608, L6–L10 (2017).
    Article ADS Google Scholar
  21. Crifo, F., Vidal-Madjar, A., Lallement, R., Ferlet, R. & Gerbaldi, M. β Pictoris revisited by Hipparcos. Star properties. Astron. Astrophys. 320, L29–L32 (1997).
    ADS Google Scholar
  22. Lagrange, A.-M. et al. β Pictoris b post conjunction detection with VLT/SPHERE. Astron. Astrophys. 621, L8–L14 (2019).
    Article ADS Google Scholar
  23. Snellen, I. A. G. & Brown, A. G. A. The mass of the young planet β Pictoris b through the astrometric motion of its host star. Nat. Astron. 2, 883–886 (2018).
    Article ADS Google Scholar
  24. Dupuy, T., Brandt, T. D., Kratter, K. M. & Bowler, B. P. A model-independent mass and moderate eccentricity for β Pic b. Astrophys. J. 871, L4–L9 (2019).
    Article ADS Google Scholar
  25. Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).
    Article ADS Google Scholar
  26. Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B. & Barman, T. Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).
    Article ADS Google Scholar
  27. Kennedy, G. M. & Kenyon, S. J. Planet formation around stars of various masses: the snow line and the frequency of giant planets. Astrophys. J. 673, 502–512 (2008).
    Article ADS Google Scholar
  28. Lagrange, A.-M. et al. The position of β Pictoris b position relative to the debris disk. Astron. Astrophys. 546, 38–51 (2012).
    Article Google Scholar
  29. Fortney, J. J., Marley, M. S., Saumon, D. & Lodders, K. Synthetic spectra and colors of young giant planet atmospheres: effects of initial conditions and atmospheric metallicity. Astrophys. J. 683, 1104–1116 (2008).
    Article ADS Google Scholar
  30. Galland, F. et al. Extrasolar planets and brown dwarfs around A–F type stars. I. Performances of radial velocity measurements, first analyses of variations. Astron. Astrophys. 443, 337–345 (2005).
    Article ADS Google Scholar
  31. Anglada-Escudé, G. & Butler, P. R. The HARPS-TERRA Project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. Astrophys. J. Suppl. 200, 15–34 (2012).
    Article ADS Google Scholar
  32. Locurto, G. et al. HARPS gets new fibres after 12 years of operation. Messenger 162, 9–15 (2015).
    ADS Google Scholar
  33. Bradley, P. A. et al. Analysis of γ Doradus and δ Scuti stars observed by Kepler. Astron. J. 149, 68–81 (2015).
    Article ADS Google Scholar
  34. Beust, H. Symplectic integration of hierarchical stellar systems. Astron. Astrophys. 400, 1129–1144 (2003).
    Article ADS Google Scholar
  35. Beust, H. & Morbidelli, A. Mean-motion resonances as a source for infalling comets toward β Pictoris. Icarus 120, 358–370 (1996).
    Article ADS Google Scholar
  36. Thebault, P. & Beust, H. Falling evaporating bodies in the β Pictoris system. Resonance refilling and long term duration of the phenomenon. Astron. Astrophys. 376, 621–640 (2001).
    Article ADS Google Scholar

Download references

Acknowledgements

This work has been supported by grants from the Agence Nationale de la Recherche (ANR-14-CE33–0018) and the French Labex OSUG@2020 (Investissements d’avenir—ANR10 LABX56). A.Z. was supported by CONICYT grant no. 2117053. A.-M.L. thanks F. Forbes, K. Zwincks, A. Lecavelier, J. Pepper, P. Kervella and J. C. B. Papaloizou for discussions. T.G., D.M., L.A. and F.-X.S. acknowledge support from Idex UCAJEDI (ANR-15-IDEX-01) and IPEV.

Author information

Authors and Affiliations

  1. Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, CNRS, IPAG, Grenoble, France
    A.-M. Lagrange, Nadège Meunier, Miriam Keppler, Franck Galland, Hervé Beust, Antoine Grandjean, Simon Borgniet, Mickael Bonnefoy & Laetitia Rodet
  2. Pixyl, La Tronche, France
    Pascal Rubini
  3. Max Planck Institute for Astronomy, Heidelberg, Germany
    Miriam Keppler
  4. Université Côte d’Azur, OCA, Lagrange CNRS, Nice, France
    Eric Chapellier, Tristan Guillot, Djamel Mékarnia, Lyu Abe & François-Xavier Schmider
  5. LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France
    Eric Michel
  6. South African Astronomical Observatory, Cape Town, South Africa
    Luis Balona
  7. CNRS, UMR7095, Institut d’Astrophysique de Paris, Paris, France
    Paul Anthony Wilson & Flavien Kiefer
  8. Department of Physics, University of Warwick, Coventry, UK
    Paul Anthony Wilson
  9. Leiden Observatory, Leiden University, Leiden, the Netherlands
    Paul Anthony Wilson
  10. European Southern Observatory, Vitacura, Santiago, Chile
    Jorge Lillo-Box, Blake Pantoja & Matias Jones
  11. Departamento de Astronomía, Universidad de Chile, Las Condes, Santiago, Chile
    Blake Pantoja & Matias Diaz
  12. Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
    Daniela Paz Iglesias
  13. Núcleo Milenio de Formación Planetaria—NPF, Universidad de Valparaíso, Valparaíso, Chile
    Daniela Paz Iglesias
  14. Center of Astro-Engineering, Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
    Abner Zapata

Authors

  1. A.-M. Lagrange
    You can also search for this author inPubMed Google Scholar
  2. Nadège Meunier
    You can also search for this author inPubMed Google Scholar
  3. Pascal Rubini
    You can also search for this author inPubMed Google Scholar
  4. Miriam Keppler
    You can also search for this author inPubMed Google Scholar
  5. Franck Galland
    You can also search for this author inPubMed Google Scholar
  6. Eric Chapellier
    You can also search for this author inPubMed Google Scholar
  7. Eric Michel
    You can also search for this author inPubMed Google Scholar
  8. Luis Balona
    You can also search for this author inPubMed Google Scholar
  9. Hervé Beust
    You can also search for this author inPubMed Google Scholar
  10. Tristan Guillot
    You can also search for this author inPubMed Google Scholar
  11. Antoine Grandjean
    You can also search for this author inPubMed Google Scholar
  12. Simon Borgniet
    You can also search for this author inPubMed Google Scholar
  13. Djamel Mékarnia
    You can also search for this author inPubMed Google Scholar
  14. Paul Anthony Wilson
    You can also search for this author inPubMed Google Scholar
  15. Flavien Kiefer
    You can also search for this author inPubMed Google Scholar
  16. Mickael Bonnefoy
    You can also search for this author inPubMed Google Scholar
  17. Jorge Lillo-Box
    You can also search for this author inPubMed Google Scholar
  18. Blake Pantoja
    You can also search for this author inPubMed Google Scholar
  19. Matias Jones
    You can also search for this author inPubMed Google Scholar
  20. Daniela Paz Iglesias
    You can also search for this author inPubMed Google Scholar
  21. Laetitia Rodet
    You can also search for this author inPubMed Google Scholar
  22. Matias Diaz
    You can also search for this author inPubMed Google Scholar
  23. Abner Zapata
    You can also search for this author inPubMed Google Scholar
  24. Lyu Abe
    You can also search for this author inPubMed Google Scholar
  25. François-Xavier Schmider
    You can also search for this author inPubMed Google Scholar

Contributions

A.-M.L. led the monitoring of the variations, the data reduction, the analysis and interpretation of the data, and the paper writing. N.M., P.R., M.K. and F.G. participated to the data fitting and analysis. E.C., E.M., L.B. and F.-X.S. brought their expertise in stellar variability. H.B. provided analysis of the dynamical stability of the system. T.G., D.M. and L.A. brought expertise on β Pictoris photometric variability. P.A.W. and F.K. brought expertise on β Pictoris spectroscopic variability. M.B., S.B., A.G., J.L.-B., B.P., D.P.I., L.R. and A.Z.S. participated in the observations.

Corresponding author

Correspondence toA.-M. Lagrange.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

About this article

Cite this article

Lagrange, AM., Meunier, N., Rubini, P. et al. Evidence for an additional planet in the β Pictoris system.Nat Astron 3, 1135–1142 (2019). https://doi.org/10.1038/s41550-019-0857-1

Download citation