Agents which increase cyclic AMP have diverse effects on low-density-lipoprotein-receptor function in human vascular smooth-muscle cells and skin fibroblasts (original) (raw)

Abstract

Receptor-mediated binding and metabolism of low-density lipoproteins (LDL) in cultured human vascular smooth-muscle cells and skin fibroblasts are altered by increased cellular cyclic AMP concentrations. However, the LDL receptor does not respond to changes in cyclic AMP concentration in a simple manner. The activation of adenylate cyclase with forskolin, or the addition of membrane-permeant cyclic AMP analogues, initially decreases the expression of the LDL receptor, but is followed by a substantial increase in receptor expression after 24 h. This increase does not occur in the presence of inhibitors of RNA or protein synthesis, and is due to doubling of the Bmax. of the LDL receptor, without alteration of its affinity for LDL. By contrast, elevation of cyclic AMP concentration by inhibition of phosphodiesterases results in decreased receptor expression throughout the 24 h period. These two response patterns are reproducible phenomena, consistently observed in low-passaged cells derived from seven unrelated individuals.

607

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
  2. Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
  3. Brown M. S., Goldstein J. L. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov;6(3):307–316. doi: 10.1016/0092-8674(75)90182-8. [DOI] [PubMed] [Google Scholar]
  4. Brown M. S., Kovanen P. T., Goldstein J. L. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog Horm Res. 1979;35:215–257. doi: 10.1016/b978-0-12-571135-7.50009-6. [DOI] [PubMed] [Google Scholar]
  5. Brown N. F., Salter A. M., Fears R., Brindley D. N. Glucagon, cyclic AMP and adrenaline stimulate the degradation of low-density lipoprotein by cultured rat hepatocytes. Biochem J. 1989 Sep 1;262(2):425–429. doi: 10.1042/bj2620425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casciola L. A., van der Westhuyzen D. R., Gevers W., Coetzee G. A. Low density lipoprotein receptor degradation is influenced by a mediator protein(s) with a rapid turnover rate, but is unaffected by receptor up- or down-regulation. J Lipid Res. 1988 Nov;29(11):1481–1489. [PubMed] [Google Scholar]
  7. Davis C. G., van Driel I. R., Russell D. W., Brown M. S., Goldstein J. L. The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis. J Biol Chem. 1987 Mar 25;262(9):4075–4082. [PubMed] [Google Scholar]
  8. Gimbrone M. A., Jr, Cotran R. S. Human vascular smooth muscle in culture. Growth and ultrastructure. Lab Invest. 1975 Jul;33(1):16–27. [PubMed] [Google Scholar]
  9. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  10. Goldstein J. L., Brown M. S. Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch Pathol. 1975 Apr;99(4):181–184. [PubMed] [Google Scholar]
  11. Golos T. G., August A. M., Strauss J. F., 3rd Expression of low density lipoprotein receptor in cultured human granulosa cells: regulation by human chorionic gonadotropin, cyclic AMP, and sterol. J Lipid Res. 1986 Oct;27(10):1089–1096. [PubMed] [Google Scholar]
  12. Golos T. G., Soto E. A., Tureck R. W., Strauss J. F., 3rd Human chorionic gonadotropin and 8-bromo-adenosine 3',5'-monophosphate stimulate [125I]low density lipoprotein uptake and metabolism by luteinized human granulosa cells in culture. J Clin Endocrinol Metab. 1985 Oct;61(4):633–638. doi: 10.1210/jcem-61-4-633. [DOI] [PubMed] [Google Scholar]
  13. Hajjar D. P. Herpesvirus infection prevents activation of cytoplasmic cholesteryl esterase in arterial smooth muscle cells. J Biol Chem. 1986 Jun 15;261(17):7611–7614. [PubMed] [Google Scholar]
  14. Hajjar D. P. Regulation of neutral cholesteryl esterase in arterial smooth muscle cells: stimulation by agonists of adenylate cyclase and cyclic AMP-dependent protein kinase. Arch Biochem Biophys. 1986 May 15;247(1):49–56. doi: 10.1016/0003-9861(86)90531-x. [DOI] [PubMed] [Google Scholar]
  15. Kishimoto A., Brown M. S., Slaughter C. A., Goldstein J. L. Phosphorylation of serine 833 in cytoplasmic domain of low density lipoprotein receptor by a high molecular weight enzyme resembling casein kinase II. J Biol Chem. 1987 Jan 25;262(3):1344–1351. [PubMed] [Google Scholar]
  16. Krone W., Hildebrandt F., Greten H. Effect of catecholamines on sterol synthesis in human mononuclear cells. Eur J Clin Invest. 1982 Dec;12(6):467–470. doi: 10.1111/j.1365-2362.1982.tb02226.x. [DOI] [PubMed] [Google Scholar]
  17. Krone W., Naegele H., Behnke B., Greten H. Opposite effects of insulin and catecholamines on LDL-receptor activity in human mononuclear leukocytes. Diabetes. 1988 Oct;37(10):1386–1391. doi: 10.2337/diab.37.10.1386. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Maziere C., Maziere J. C., Salmon S., Auclair M., Mora L., Moreau M., Polonovski J. Cyclic AMP decreases LDL catabolism and cholesterol synthesis in the human hepatoma cell line HepG2. Biochem Biophys Res Commun. 1988 Oct 14;156(1):424–431. doi: 10.1016/s0006-291x(88)80858-1. [DOI] [PubMed] [Google Scholar]
  20. Mazière J. C., Mazière C., Gardette J., Mora L., Polonovski J. Effect of cyclic AMP on low density lipoprotein binding and internalization by cultured human fibroblasts. Biochem Biophys Res Commun. 1983 May 16;112(3):795–800. doi: 10.1016/0006-291x(83)91687-x. [DOI] [PubMed] [Google Scholar]
  21. Middleton B., Bartlett K. The synthesis and characterisation of 2-methylacetoacetyl coenzyme A and its use in the identification of the site of the defect in 2-methylacetoacetic and 2-methyl-3-hydroxybutyric aciduria. Clin Chim Acta. 1983 Mar 14;128(2-3):291–305. doi: 10.1016/0009-8981(83)90329-7. [DOI] [PubMed] [Google Scholar]
  22. Orekhov A. N., Tertov V. V., Kudryashov S. A., Khashimov Kh A., Smirnov V. N. Primary culture of human aortic intima cells as a model for testing antiatherosclerotic drugs. Effects of cyclic AMP, prostaglandins, calcium antagonists, antioxidants, and lipid-lowering agents. Atherosclerosis. 1986 May;60(2):101–110. doi: 10.1016/0021-9150(86)90002-x. [DOI] [PubMed] [Google Scholar]
  23. Roesler W. J., Vandenbark G. R., Hanson R. W. Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem. 1988 Jul 5;263(19):9063–9066. [PubMed] [Google Scholar]
  24. Rosenfeld M. E., Tsukada T., Chait A., Bierman E. L., Gown A. M., Ross R. Fatty streak expansion and maturation in Watanabe Heritable Hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1987 Jan-Feb;7(1):24–34. doi: 10.1161/01.atv.7.1.24. [DOI] [PubMed] [Google Scholar]
  25. Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  26. Ruppert D., Weithmann K. U. HL 725, an extremely potent inhibitor of platelet phosphodiesterase and induced platelet aggregation in vitro. Life Sci. 1982 Nov 8;31(19):2037–2043. doi: 10.1016/0024-3205(82)90095-9. [DOI] [PubMed] [Google Scholar]
  27. Schonfeld G., Pfleger B., Needleman P., Kipnis D. Indomethacin inhibits the cellular receptor-dependent processing of low density lipoproteins; cyclic nucleotides have no effect. J Clin Endocrinol Metab. 1980 Sep;51(3):662–668. doi: 10.1210/jcem-51-3-662. [DOI] [PubMed] [Google Scholar]
  28. Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
  29. Shenolikar S. Control of cell function by reversible protein phosphorylation. J Cyclic Nucleotide Protein Phosphor Res. 1986;11(7):531–541. [PubMed] [Google Scholar]
  30. Stout R. W., Bierman E. L. Dibutyryl cyclic AMP inhibits LDL binding in cultured fibroblasts and arterial smooth muscle cells. Atherosclerosis. 1983 Jan;46(1):13–20. doi: 10.1016/0021-9150(83)90159-4. [DOI] [PubMed] [Google Scholar]
  31. Wolff J., Londos C., Cooper D. M. Adenosine receptors and the regulation of adenylate cyclase. Adv Cyclic Nucleotide Res. 1981;14:199–214. [PubMed] [Google Scholar]