Human Sug1/p45 is involved in the proteasome-dependent degradation of Sp1 (original) (raw)
. 2000 Jun 1;348(Pt 2):281–289.
Abstract
The transcription factor Sp1 was previously shown to undergo proteasome-dependent degradation when cells were glucose-starved and stimulated with the adenylate cyclase inducer, forskolin. However, the control of the Sp1 degradation process is largely unknown. Using in vitro and in vivo interaction studies, we show in the present study that Sp1 interacts with human Sug1 [hSug1, also known as p45 or thyroid-hormone-receptor interacting protein ('TRIP1')], an ATPase subunit of the 26 S proteasome and a putative transcriptional modulator. This interaction with Sp1 occurs through the C-terminus of hSug1, the region that contains the conserved ATPase domain in this protein. Both in vitro studies, in reconstituted degradation assays, and in vivo experiments, in which hSug1 is overexpressed in normal rat kidney cells, show that full-length hSug1 is able to stimulate the proteasome-dependent degradation of Sp1. However, hSug1 truncations that lack either the N- or C-terminal domain of hSug1 act as dominant negatives, inhibiting Sp1 degradation in vitro. Also, an ATPase mutant of hSug1, while still able to bind Sp1, acts as a dominant negative, blocking Sp1 degradation both in vitro and in vivo. These results demonstrate that hSug1 is involved in the degradation of Sp1 and that ATP hydrolysis by hSug1 is necessary for this process. Our findings indicate that hSug1 is an exchangeable proteasomal component that plays a critical regulatory role in the proteasome-dependent degradation of Sp1. However, hSug1 is not the factor limiting Sp1 degradation in the cells treated with glucosamine. This and other considerations suggest that hSug1 co-operation with other molecules is necessary to target Sp1 for proteasome degradation.
Full Text
The Full Text of this article is available as a PDF (264.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama K., Yokota K., Kagawa S., Shimbara N., DeMartino G. N., Slaughter C. A., Noda C., Tanaka K. cDNA cloning of a new putative ATPase subunit p45 of the human 26S proteasome, a homolog of yeast transcriptional factor Sug1p. FEBS Lett. 1995 Apr 17;363(1-2):151–156. doi: 10.1016/0014-5793(95)00304-r. [DOI] [PubMed] [Google Scholar]
- Armon T., Ganoth D., Hershko A. Assembly of the 26 S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J Biol Chem. 1990 Dec 5;265(34):20723–20726. [PubMed] [Google Scholar]
- Arrigo A. P., Tanaka K., Goldberg A. L., Welch W. J. Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature. 1988 Jan 14;331(6152):192–194. doi: 10.1038/331192a0. [DOI] [PubMed] [Google Scholar]
- Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
- Dawson S., Hastings R., Takayanagi K., Reynolds S., Løw P., Billett M., Mayer R. J. The 26S-proteasome: regulation and substrate recognition. Mol Biol Rep. 1997 Mar;24(1-2):39–44. doi: 10.1023/a:1006800522814. [DOI] [PubMed] [Google Scholar]
- DeMartino G. N., Moomaw C. R., Zagnitko O. P., Proske R. J., Chu-Ping M., Afendis S. J., Swaffield J. C., Slaughter C. A. PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J Biol Chem. 1994 Aug 19;269(33):20878–20884. [PubMed] [Google Scholar]
- Deveraux Q., Ustrell V., Pickart C., Rechsteiner M. A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem. 1994 Mar 11;269(10):7059–7061. [PubMed] [Google Scholar]
- Driscoll J., Goldberg A. L. The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J Biol Chem. 1990 Mar 25;265(9):4789–4792. [PubMed] [Google Scholar]
- Dubiel W., Ferrell K., Pratt G., Rechsteiner M. Subunit 4 of the 26 S protease is a member of a novel eukaryotic ATPase family. J Biol Chem. 1992 Nov 15;267(32):22699–22702. [PubMed] [Google Scholar]
- Dubiel W., Ferrell K., Rechsteiner M. Peptide sequencing identifies MSS1, a modulator of HIV Tat-mediated transactivation, as subunit 7 of the 26 S protease. FEBS Lett. 1993 Jun 1;323(3):276–278. doi: 10.1016/0014-5793(93)81356-5. [DOI] [PubMed] [Google Scholar]
- Fraser R. A., Rossignol M., Heard D. J., Egly J. M., Chambon P. SUG1, a putative transcriptional mediator and subunit of the PA700 proteasome regulatory complex, is a DNA helicase. J Biol Chem. 1997 Mar 14;272(11):7122–7126. doi: 10.1074/jbc.272.11.7122. [DOI] [PubMed] [Google Scholar]
- Ghislain M., Udvardy A., Mann C. S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature. 1993 Nov 25;366(6453):358–362. doi: 10.1038/366358a0. [DOI] [PubMed] [Google Scholar]
- Glickman M. H., Rubin D. M., Fried V. A., Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol. 1998 Jun;18(6):3149–3162. doi: 10.1128/mcb.18.6.3149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glickman M. H., Rubin D. M., Fu H., Larsen C. N., Coux O., Wefes I., Pfeifer G., Cjeka Z., Vierstra R., Baumeister W. Functional analysis of the proteasome regulatory particle. Mol Biol Rep. 1999 Apr;26(1-2):21–28. doi: 10.1023/a:1006928316738. [DOI] [PubMed] [Google Scholar]
- Gorbea C., Taillandier D., Rechsteiner M. Assembly of the regulatory complex of the 26S proteasome. Mol Biol Rep. 1999 Apr;26(1-2):15–19. doi: 10.1023/a:1006957802028. [DOI] [PubMed] [Google Scholar]
- Han I., Kudlow J. E. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol. 1997 May;17(5):2550–2558. doi: 10.1128/mcb.17.5.2550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman L., Rechsteiner M. Activation of the multicatalytic protease. The 11 S regulator and 20 S ATPase complexes contain distinct 30-kilodalton subunits. J Biol Chem. 1994 Jun 17;269(24):16890–16895. [PubMed] [Google Scholar]
- Javerzat J. P., McGurk G., Cranston G., Barreau C., Bernard P., Gordon C., Allshire R. Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation. Mol Cell Biol. 1999 Jul;19(7):5155–5165. doi: 10.1128/mcb.19.7.5155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen C. N., Finley D. Protein translocation channels in the proteasome and other proteases. Cell. 1997 Nov 14;91(4):431–434. doi: 10.1016/s0092-8674(00)80427-4. [DOI] [PubMed] [Google Scholar]
- Lee J. W., Ryan F., Swaffield J. C., Johnston S. A., Moore D. D. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature. 1995 Mar 2;374(6517):91–94. doi: 10.1038/374091a0. [DOI] [PubMed] [Google Scholar]
- Makino Y., Yamano K., Kanemaki M., Morikawa K., Kishimoto T., Shimbara N., Tanaka K., Tamura T. SUG1, a component of the 26 S proteasome, is an ATPase stimulated by specific RNAs. J Biol Chem. 1997 Sep 12;272(37):23201–23205. doi: 10.1074/jbc.272.37.23201. [DOI] [PubMed] [Google Scholar]
- Makino Y., Yogosawa S., Kanemaki M., Yoshida T., Yamano K., Kishimoto T., Moncollin V., Egly J. M., Muramatsu M., Tamura T. Structures of the rat proteasomal ATPases: determination of highly conserved structural motifs and rules for their spacing. Biochem Biophys Res Commun. 1996 Mar 27;220(3):1049–1054. doi: 10.1006/bbrc.1996.0530. [DOI] [PubMed] [Google Scholar]
- Masuyama H., MacDonald P. N. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J Cell Biochem. 1998 Dec 1;71(3):429–440. [PubMed] [Google Scholar]
- Mortensen E. R., Marks P. A., Shiotani A., Merchant J. L. Epidermal growth factor and okadaic acid stimulate Sp1 proteolysis. J Biol Chem. 1997 Jun 27;272(26):16540–16547. doi: 10.1074/jbc.272.26.16540. [DOI] [PubMed] [Google Scholar]
- Orino E., Tanaka K., Tamura T., Sone S., Ogura T., Ichihara A. ATP-dependent reversible association of proteasomes with multiple protein components to form 26S complexes that degrade ubiquitinated proteins in human HL-60 cells. FEBS Lett. 1991 Jun 24;284(2):206–210. doi: 10.1016/0014-5793(91)80686-w. [DOI] [PubMed] [Google Scholar]
- Pak M., Wickner S. Mechanism of protein remodeling by ClpA chaperone. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4901–4906. doi: 10.1073/pnas.94.10.4901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters J. M., Franke W. W., Kleinschmidt J. A. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem. 1994 Mar 11;269(10):7709–7718. [PubMed] [Google Scholar]
- Richmond C., Gorbea C., Rechsteiner M. Specific interactions between ATPase subunits of the 26 S protease. J Biol Chem. 1997 May 16;272(20):13403–13411. doi: 10.1074/jbc.272.20.13403. [DOI] [PubMed] [Google Scholar]
- Rolfe M., Beer-Romero P., Glass S., Eckstein J., Berdo I., Theodoras A., Pagano M., Draetta G. Reconstitution of p53-ubiquitinylation reactions from purified components: the role of human ubiquitin-conjugating enzyme UBC4 and E6-associated protein (E6AP). Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3264–3268. doi: 10.1073/pnas.92.8.3264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos M. D., Su K., Baker J. R., Kudlow J. E. O glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions. Mol Cell Biol. 1997 Nov;17(11):6472–6480. doi: 10.1128/mcb.17.11.6472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin D. M., Coux O., Wefes I., Hengartner C., Young R. A., Goldberg A. L., Finley D. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature. 1996 Feb 15;379(6566):655–657. doi: 10.1038/379655a0. [DOI] [PubMed] [Google Scholar]
- Rubin D. M., Glickman M. H., Larsen C. N., Dhruvakumar S., Finley D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 1998 Sep 1;17(17):4909–4919. doi: 10.1093/emboj/17.17.4909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell S. J., Steger K. A., Johnston S. A. Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem. 1999 Jul 30;274(31):21943–21952. doi: 10.1074/jbc.274.31.21943. [DOI] [PubMed] [Google Scholar]
- Sayeski P. P., Kudlow J. E. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription. J Biol Chem. 1996 Jun 21;271(25):15237–15243. doi: 10.1074/jbc.271.25.15237. [DOI] [PubMed] [Google Scholar]
- Schweder T., Lee K. H., Lomovskaya O., Matin A. Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. J Bacteriol. 1996 Jan;178(2):470–476. doi: 10.1128/jb.178.2.470-476.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sears C., Olesen J., Rubin D., Finley D., Maniatis T. NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J Biol Chem. 1998 Jan 16;273(3):1409–1419. doi: 10.1074/jbc.273.3.1409. [DOI] [PubMed] [Google Scholar]
- Shin T. H., Paterson A. J., Grant J. H., 3rd, Meluch A. A., Kudlow J. E. 5-Azacytidine treatment of HA-A melanoma cells induces Sp1 activity and concomitant transforming growth factor alpha expression. Mol Cell Biol. 1992 Sep;12(9):3998–4006. doi: 10.1128/mcb.12.9.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stancovski I., Gonen H., Orian A., Schwartz A. L., Ciechanover A. Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol Cell Biol. 1995 Dec;15(12):7106–7116. doi: 10.1128/mcb.15.12.7106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su K., Roos M. D., Yang X., Han I., Paterson A. J., Kudlow J. E. An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J Biol Chem. 1999 May 21;274(21):15194–15202. doi: 10.1074/jbc.274.21.15194. [DOI] [PubMed] [Google Scholar]
- Swaffield J. C., Melcher K., Johnston S. A. A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein. Nature. 1995 Mar 2;374(6517):88–91. doi: 10.1038/374088a0. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Yoshimura T., Kumatori A., Ichihara A., Ikai A., Nishigai M., Kameyama K., Takagi T. Proteasomes (multi-protease complexes) as 20 S ring-shaped particles in a variety of eukaryotic cells. J Biol Chem. 1988 Nov 5;263(31):16209–16217. [PubMed] [Google Scholar]
- Treier M., Staszewski L. M., Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell. 1994 Sep 9;78(5):787–798. doi: 10.1016/s0092-8674(94)90502-9. [DOI] [PubMed] [Google Scholar]
- Wang W., Chevray P. M., Nathans D. Mammalian Sug1 and c-Fos in the nuclear 26S proteasome. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8236–8240. doi: 10.1073/pnas.93.16.8236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wawrzynow A., Wojtkowiak D., Marszalek J., Banecki B., Jonsen M., Graves B., Georgopoulos C., Zylicz M. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J. 1995 May 1;14(9):1867–1877. doi: 10.1002/j.1460-2075.1995.tb07179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weeda G., Rossignol M., Fraser R. A., Winkler G. S., Vermeulen W., van 't Veer L. J., Ma L., Hoeijmakers J. H., Egly J. M. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res. 1997 Jun 15;25(12):2274–2283. doi: 10.1093/nar/25.12.2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Nocker S., Deveraux Q., Rechsteiner M., Vierstra R. D. Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):856–860. doi: 10.1073/pnas.93.2.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- vom Baur E., Zechel C., Heery D., Heine M. J., Garnier J. M., Vivat V., Le Douarin B., Gronemeyer H., Chambon P., Losson R. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 1996 Jan 2;15(1):110–124. [PMC free article] [PubMed] [Google Scholar]