Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters (original) (raw)

Abstract

The LIV-1 gene has been previously associated with oestrogen-positive breast cancer and its metastatic spread to the regional lymph nodes. We have investigated the protein product of this gene as a marker for disease progression of breast cancer. The protein sequence contains a potential metalloprotease motif (HEX P H E XGD), which fits the consensus sequence for the catalytic zinc-binding site motif of the zincin metalloproteases. This motif has identified a new subfamily of ZIP (Zrt-, Irt-like proteins) zinc transporters, which we have termed LZT (LIV-1 subfamily of ZIP zinc transporters). Expression of recombinant LIV-1 in Chinese-hamster ovary cells confirmed the prediction that LZT proteins can act as zinc-influx transporters. Zinc is essential for growth and zinc transporters have an important role in maintaining intracellular zinc homoeostasis, aberrations of which could lead to diseases such as cancer. This is the first report of the expression of a recombinant human LZT protein in mammalian cells. Recombinant LIV-1 locates to the plasma membrane, concentrated in lamellipodiae, similar to membrane-type metalloproteases. Examination of LIV-1 tissue expression located it mainly to hormonally controlled tissues with widespread expression in the brain. Interestingly, the LIV-1 sequence contains a strong PEST site and other potential degradation motifs, which, combined with our evidence that recombinant LIV-1 associates with ubiquitin, may explain the low-level expression of LIV-1. Combining the crucial role that zinc plays in cell growth and the proven role of metalloproteases in metastasis presents an exciting indication of how LIV-1 plays a role in breast cancer progression.

Full Text

The Full Text of this article is available as a PDF (292.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell B. E., Karlin S. Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2002–2006. doi: 10.1073/pnas.89.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen W. T., Wang J. Y. Specialized surface protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Ann N Y Acad Sci. 1999 Jun 30;878:361–371. doi: 10.1111/j.1749-6632.1999.tb07695.x. [DOI] [PubMed] [Google Scholar]
  3. Costello L. C., Liu Y., Zou J., Franklin R. B. Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem. 1999 Jun 18;274(25):17499–17504. doi: 10.1074/jbc.274.25.17499. [DOI] [PubMed] [Google Scholar]
  4. Cserzö M., Wallin E., Simon I., von Heijne G., Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 1997 Jun;10(6):673–676. doi: 10.1093/protein/10.6.673. [DOI] [PubMed] [Google Scholar]
  5. Gaither L. A., Eide D. J. Eukaryotic zinc transporters and their regulation. Biometals. 2001 Sep-Dec;14(3-4):251–270. doi: 10.1023/a:1012988914300. [DOI] [PubMed] [Google Scholar]
  6. Gaither L. A., Eide D. J. Functional expression of the human hZIP2 zinc transporter. J Biol Chem. 2000 Feb 25;275(8):5560–5564. doi: 10.1074/jbc.275.8.5560. [DOI] [PubMed] [Google Scholar]
  7. Gaither L. A., Eide D. J. The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem. 2001 Apr 11;276(25):22258–22264. doi: 10.1074/jbc.M101772200. [DOI] [PubMed] [Google Scholar]
  8. Geourjon C., Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995 Dec;11(6):681–684. doi: 10.1093/bioinformatics/11.6.681. [DOI] [PubMed] [Google Scholar]
  9. Gitan R. S., Eide D. J. Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochem J. 2000 Mar 1;346(Pt 2):329–336. [PMC free article] [PubMed] [Google Scholar]
  10. Gomes A. V., Barnes J. A. Pest sequences in EF-hand calcium-binding proteins. Biochem Mol Biol Int. 1995 Nov;37(5):853–860. [PubMed] [Google Scholar]
  11. Hirokawa T., Boon-Chieng S., Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14(4):378–379. doi: 10.1093/bioinformatics/14.4.378. [DOI] [PubMed] [Google Scholar]
  12. Hooper N. M. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1–6. doi: 10.1016/0014-5793(94)01079-x. [DOI] [PubMed] [Google Scholar]
  13. Huang L., Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet. 1997 Nov;17(3):292–297. doi: 10.1038/ng1197-292. [DOI] [PubMed] [Google Scholar]
  14. Huang Liping, Kirschke Catherine P., Gitschier Jane. Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem. 2002 May 7;277(29):26389–26395. doi: 10.1074/jbc.M200462200. [DOI] [PubMed] [Google Scholar]
  15. Itoh Yoshifumi, Nagase Hideaki. Matrix metalloproteinases in cancer. Essays Biochem. 2002;38:21–36. doi: 10.1042/bse0380021. [DOI] [PubMed] [Google Scholar]
  16. Jiang W., Bond J. S. Families of metalloendopeptidases and their relationships. FEBS Lett. 1992 Nov 9;312(2-3):110–114. doi: 10.1016/0014-5793(92)80916-5. [DOI] [PubMed] [Google Scholar]
  17. Kirschke Catherine P., Huang Liping. ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem. 2002 Nov 21;278(6):4096–4102. doi: 10.1074/jbc.M207644200. [DOI] [PubMed] [Google Scholar]
  18. Koh J. Y., Suh S. W., Gwag B. J., He Y. Y., Hsu C. Y., Choi D. W. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science. 1996 May 17;272(5264):1013–1016. doi: 10.1126/science.272.5264.1013. [DOI] [PubMed] [Google Scholar]
  19. Kornitzer D., Raboy B., Kulka R. G., Fink G. R. Regulated degradation of the transcription factor Gcn4. EMBO J. 1994 Dec 15;13(24):6021–6030. doi: 10.1002/j.1460-2075.1994.tb06948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Küry Sébastien, Dréno Brigitte, Bézieau Stéphane, Giraudet Stéphanie, Kharfi Monia, Kamoun Ridha, Moisan Jean-Paul. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet. 2002 Jun 17;31(3):239–240. doi: 10.1038/ng913. [DOI] [PubMed] [Google Scholar]
  21. Manning D. L., Daly R. J., Lord P. G., Kelly K. F., Green C. D. Effects of oestrogen on the expression of a 4.4 kb mRNA in the ZR-75-1 human breast cancer cell line. Mol Cell Endocrinol. 1988 Oct;59(3):205–212. doi: 10.1016/0303-7207(88)90105-0. [DOI] [PubMed] [Google Scholar]
  22. Manning D. L., McClelland R. A., Knowlden J. M., Bryant S., Gee J. M., Green C. D., Robertson J. F., Blamey R. W., Sutherland R. L., Ormandy C. J. Differential expression of oestrogen regulated genes in breast cancer. Acta Oncol. 1995;34(5):641–646. doi: 10.3109/02841869509094041. [DOI] [PubMed] [Google Scholar]
  23. Manning D. L., Robertson J. F., Ellis I. O., Elston C. W., McClelland R. A., Gee J. M., Jones R. J., Green C. D., Cannon P., Blamey R. W. Oestrogen-regulated genes in breast cancer: association of pLIV1 with lymph node involvement. Eur J Cancer. 1994;30A(5):675–678. doi: 10.1016/0959-8049(94)90543-6. [DOI] [PubMed] [Google Scholar]
  24. McClelland R. A., Manning D. L., Gee J. M., Willsher P., Robertson J. F., Ellis I. O., Blamey R. W., Nicholson R. I. Oestrogen-regulated genes in breast cancer: association of pLIV1 with response to endocrine therapy. Br J Cancer. 1998 May;77(10):1653–1656. doi: 10.1038/bjc.1998.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Molloy S. S., Anderson E. D., Jean F., Thomas G. Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol. 1999 Jan;9(1):28–35. doi: 10.1016/s0962-8924(98)01382-8. [DOI] [PubMed] [Google Scholar]
  26. Nakai K., Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci. 1999 Jan;24(1):34–36. doi: 10.1016/s0968-0004(98)01336-x. [DOI] [PubMed] [Google Scholar]
  27. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  29. Palmiter R. D., Cole T. B., Quaife C. J., Findley S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14934–14939. doi: 10.1073/pnas.93.25.14934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ragusa S., Mouchet P., Lazennec C., Dive V., Meinnel T. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin. J Mol Biol. 1999 Jun 25;289(5):1445–1457. doi: 10.1006/jmbi.1999.2832. [DOI] [PubMed] [Google Scholar]
  31. Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
  32. Rudner D. Z., Fawcett P., Losick R. A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14765–14770. doi: 10.1073/pnas.96.26.14765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Seidah N. G., Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999 Nov 27;848(1-2):45–62. doi: 10.1016/s0006-8993(99)01909-5. [DOI] [PubMed] [Google Scholar]
  34. Suzuki Akiko, Endo Takeshi. Ermelin, an endoplasmic reticulum transmembrane protein, contains the novel HELP domain conserved in eukaryotes. Gene. 2002 Feb 6;284(1-2):31–40. doi: 10.1016/s0378-1119(01)00885-x. [DOI] [PubMed] [Google Scholar]
  35. Taylor K. M. LIV-1 breast cancer protein belongs to new family of histidine-rich membrane proteins with potential to control intracellular Zn2+ homeostasis. IUBMB Life. 2000 Apr;49(4):249–253. doi: 10.1080/15216540050033087. [DOI] [PubMed] [Google Scholar]
  36. Taylor K. M., Trimby A. R., Campbell A. K. Mutation of recombinant complement component C9 reveals the significance of the N-terminal region for polymerization. Immunology. 1997 May;91(1):20–27. doi: 10.1046/j.1365-2567.1997.00225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Taylor Kathryn M., Nicholson Robert I. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta. 2003 Apr 1;1611(1-2):16–30. doi: 10.1016/s0005-2736(03)00048-8. [DOI] [PubMed] [Google Scholar]
  38. Thomas Gary. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol. 2002 Oct;3(10):753–766. doi: 10.1038/nrm934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Truong-Tran A. Q., Carter J., Ruffin R. E., Zalewski P. D. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001 Sep-Dec;14(3-4):315–330. doi: 10.1023/a:1012993017026. [DOI] [PubMed] [Google Scholar]
  40. Tusnády G. E., Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol. 1998 Oct 23;283(2):489–506. doi: 10.1006/jmbi.1998.2107. [DOI] [PubMed] [Google Scholar]
  41. Urban Sinisa, Freeman Matthew. Intramembrane proteolysis controls diverse signalling pathways throughout evolution. Curr Opin Genet Dev. 2002 Oct;12(5):512–518. doi: 10.1016/s0959-437x(02)00334-9. [DOI] [PubMed] [Google Scholar]
  42. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  43. Vallee B. L., Falchuk K. H. The biochemical basis of zinc physiology. Physiol Rev. 1993 Jan;73(1):79–118. doi: 10.1152/physrev.1993.73.1.79. [DOI] [PubMed] [Google Scholar]
  44. Varshavsky A. The ubiquitin system. Trends Biochem Sci. 1997 Oct;22(10):383–387. doi: 10.1016/s0968-0004(97)01122-5. [DOI] [PubMed] [Google Scholar]
  45. Varshavsky A. The ubiquitin system. Trends Biochem Sci. 1997 Oct;22(10):383–387. doi: 10.1016/s0968-0004(97)01122-5. [DOI] [PubMed] [Google Scholar]
  46. Wang Kun, Zhou Bing, Kuo Yien-Ming, Zemansky Jason, Gitschier Jane. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002 May 24;71(1):66–73. doi: 10.1086/341125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weihofen Andreas, Martoglio Bruno. Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol. 2003 Feb;13(2):71–78. doi: 10.1016/s0962-8924(02)00041-7. [DOI] [PubMed] [Google Scholar]