Inhibition of sterol 4-demethylation in Candida albicans by 6-amino-2-n-pentylthiobenzothiazole, a novel mechanism of action for an antifungal agent (original) (raw)

Abstract

The effects of 6-amino-2-n-pentylthiobenzothiazole (APB), a new antifungal agent, on ergosterol biosynthesis in Candida albicans and Saccharomyces cerevisiae were studied, using [14C]acetate incorporation. In C. albicans, the inhibition of growth was accompanied by a marked inhibition of acetate incorporation in 4-desmethylsterols, with a significant portion of the radiolabel being incorporated in 4,4-dimethylsterols, lanosterol, and 4,4-dimethylzymosterol and minor amounts being incorporated in 4-methylsterols and squalene. The data are interpreted as evidence of a block of the ergosterol biosynthesis pathway at the level of 4-demethylation of 4,4-dimethylzymosterol, with partial inhibition of lanosterol 14-dimethylation and squalene epoxidation also being possible. In 6-amino-2-n-pentylthiobenzothiazole-treated S. cerevisiae, a significant amount of the radiolabel was incorporated also in 4-methylsterols, 4-methylzymosterol, and 4-methylfecosterol, indicating that in this microorganism there are different sensitivities of the two 4-demethylations and that the pathway is blocked at the level of 4-demethylation of 4-methylsterols.

Full Text

The Full Text of this article is available as a PDF (197.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett-Bee K., Newboult L., Pinder P. Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on Candida albicans and Trichophyton quinckeanum. FEMS Microbiol Lett. 1991 Apr 15;63(2-3):127–131. doi: 10.1016/0378-1097(91)90074-k. [DOI] [PubMed] [Google Scholar]
  2. Bouvier P., Rohmer M., Benveniste P., Ourisson G. Delta8(14)-steroids in the bacterium Methylococcus capsulatus. Biochem J. 1976 Nov;159(2):267–271. doi: 10.1042/bj1590267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bujdáková H., Kuchta T., Sidóová E., Gvozdjaková A. Anti-Candida activity of four antifungal benzothiazoles. FEMS Microbiol Lett. 1993 Sep 15;112(3):329–333. doi: 10.1111/j.1574-6968.1993.tb06471.x. [DOI] [PubMed] [Google Scholar]
  4. Buttke T. M., Bloch K. Utilization and metabolism of methyl-sterol derivatives in the yeast mutant strain GL7. Biochemistry. 1981 May 26;20(11):3267–3272. doi: 10.1021/bi00514a044. [DOI] [PubMed] [Google Scholar]
  5. Fryberg M., Oehlschlager A. C., Unrau A. M. Biosynthesis of ergosterol in yeast. Evidence for multiple pathways. J Am Chem Soc. 1973 Aug 22;95(17):5747–5757. doi: 10.1021/ja00798a051. [DOI] [PubMed] [Google Scholar]
  6. Fryberg M., Oehlschlager A. C., Unrau A. M. Sterol biosynthesis in antibiotic sensitive and resistant Candida. Arch Biochem Biophys. 1976 Mar;173(1):171–177. doi: 10.1016/0003-9861(76)90247-2. [DOI] [PubMed] [Google Scholar]
  7. Gonzales R. A., Parks L. W. Acid-labilization of sterols for extraction from yeast. Biochim Biophys Acta. 1977 Dec 21;489(3):507–509. doi: 10.1016/0005-2760(77)90171-0. [DOI] [PubMed] [Google Scholar]
  8. Hata S., Oda Y., Nishino T., Katsuki H., Aoyama Y., Yoshida Y., Nagai J. Characterization of a Saccharomyces cerevisiae mutant, N22, defective in ergosterol synthesis and preparation of [28-14C]ergosta-5,7-dien-3 beta-ol with the mutant. J Biochem. 1983 Aug;94(2):501–510. doi: 10.1093/oxfordjournals.jbchem.a134381. [DOI] [PubMed] [Google Scholar]
  9. Kuchta T., Bartková K., Kubinec R. Ergosterol depletion and 4-methyl sterols accumulation in the yeast Saccharomyces cerevisiae treated with an antifungal, 6-amino-2-n-pentylthiobenzothiazole. Biochem Biophys Res Commun. 1992 Nov 30;189(1):85–91. doi: 10.1016/0006-291x(92)91529-y. [DOI] [PubMed] [Google Scholar]
  10. Kuchta T., Bujdáková H., Sidóová E. Inhibition of yeast-mycelium transformation by 2-alkylthio-6-amino- and 2-alkylthio-6-formamidobenzothiazoles and their in vitro antifungal activity. Folia Microbiol (Praha) 1989;34(6):504–510. doi: 10.1007/BF02814461. [DOI] [PubMed] [Google Scholar]
  11. Nes W. D., Janssen G. G., Crumley F. G., Kalinowska M., Akihisa T. The structural requirements of sterols for membrane function in Saccharomyces cerevisiae. Arch Biochem Biophys. 1993 Feb 1;300(2):724–733. doi: 10.1006/abbi.1993.1100. [DOI] [PubMed] [Google Scholar]
  12. Nicholas R. O., Kerridge D. Correlation of inhibition of sterol synthesis with growth-inhibitory action of imidazole antimycotics in Candida albicans. J Antimicrob Chemother. 1989 Jan;23(1):7–19. doi: 10.1093/jac/23.1.7. [DOI] [PubMed] [Google Scholar]
  13. Pascal S., Taton M., Rahier A. Plant sterol biosynthesis. Identification and characterization of two distinct microsomal oxidative enzymatic systems involved in sterol C4-demethylation. J Biol Chem. 1993 Jun 5;268(16):11639–11654. [PubMed] [Google Scholar]
  14. Polak A., Hartman P. G. Antifungal chemotherapy--are we winning? Prog Drug Res. 1991;37:181–269. doi: 10.1007/978-3-0348-7139-6_5. [DOI] [PubMed] [Google Scholar]
  15. Trocha P. J., Jasne S. J., Sprinson D. B. Yeast mutants blocked in removing the methyl group of lanosterol at C-14. Separation of sterols by high-pressure liquid chromatography. Biochemistry. 1977 Oct 18;16(21):4721–4726. doi: 10.1021/bi00640a029. [DOI] [PubMed] [Google Scholar]
  16. Yoshida Y. Cytochrome P450 of fungi: primary target for azole antifungal agents. Curr Top Med Mycol. 1988;2:388–418. doi: 10.1007/978-1-4612-3730-3_11. [DOI] [PubMed] [Google Scholar]