Evidence from oocyte expression that the erythrocyte water channel is distinct from band 3 and the glucose transporter (original) (raw)

Abstract

It has been proposed that the mercurial-sensitive water transporter in mammalian erythrocytes is the anion exchanger band 3 (AE1) and/or the glucose transporter, band 4.5 (GLUT1). Using a functional assay for water channel expression in Xenopus oocytes (Zhang, R., K. A. Logee, and A. S. Verkman. 1990. J. Biol. Chem. 265:15375-15378), we compared osmotic water permeability (Pf) of oocytes injected with water, reticulocyte mRNA, AE1 mRNA, and GLUT1 mRNA. Injection of oocytes with 5-50 ng of in vitro-transcribed AE1 mRNA had no effect on Pf, but increased trans-stimulated 36Cl uptake greater than fourfold in a dinitro-disulfonic stilbene (DNDS)-inhibitable manner. Injection with 1-50 ng of in vitro-transcribed GLUT1 mRNA increased 3H-methylglucose uptake greater than 15-fold in a cytochalasin B-sensitive manner and increased Pf from (3.7 +/- 0.4) x 10(-4) cm/s (SE, n = 16, 10 degrees C) in water-injected oocytes up to (13 +/- 1) x 10(-4) cm/s (n = 18). Both the increments in sugar and water transport were inhibited by cytochalasin B (25 microM) and phloretin (0.2 mM); neither was inhibited by 0.3 mM HgCl2. In oocytes injected with 50 ng of rabbit reticulocyte mRNA, the Pf of (18 +/- 2) x 10(-4) cm/s (n = 18) was reduced to (4.0 +/- 0.6) x 10(-4) cm/s (n = 10) by HgCl2, but was not inhibited by DNDS (0.4 mM), cytochalasin B or phloretin. Coinjection of reticulocyte mRNA with antisense oligodeoxyribonucleotides against AE1 or GLUT1 did not affect Pf, but inhibited completely the incremental uptake of 36Cl or 3H-methylglucose, respectively. Expression of size-fractionated mRNA from reticulocyte gave a 2-2.5-kb size for water channel mRNA, less than the 4-4.5-kb size for the Cl transporter. These results provide evidence that facilitated water transport in erythrocytes is mediated not by bands 3 or 4.5, but by distinct water transport protein(s).

1553

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper S. L., Natale J., Gluck S., Lodish H. F., Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5429–5433. doi: 10.1073/pnas.86.14.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benga G., Popescu O., Borza V., Pop V. I., Muresan A., Mocsy I., Brain A., Wrigglesworth J. M. Water permeability in human erythrocytes: identification of membrane proteins involved in water transport. Eur J Cell Biol. 1986 Aug;41(2):252–262. [PubMed] [Google Scholar]
  3. Benga G., Popescu O., Pop V. I. Water exchange through erythrocyte membranes. V. Incubation with papain prevents the P-chloromercuri-benzensulfonate inhibition of water diffusion studied by a nuclear magnetic resonance technique. Cell Biol Int Rep. 1983 Oct;7(10):807–818. doi: 10.1016/0309-1651(83)90184-4. [DOI] [PubMed] [Google Scholar]
  4. Birnbaum M. J., Haspel H. C., Rosen O. M. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5784–5788. doi: 10.1073/pnas.83.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brahm J. Kinetics of glucose transport in human erythrocytes. J Physiol. 1983 Jun;339:339–354. doi: 10.1113/jphysiol.1983.sp014720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brosius F. C., 3rd, Alper S. L., Garcia A. M., Lodish H. F. The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem. 1989 May 15;264(14):7784–7787. [PubMed] [Google Scholar]
  7. Brown D. Membrane recycling and epithelial cell function. Am J Physiol. 1989 Jan;256(1 Pt 2):F1–12. doi: 10.1152/ajprenal.1989.256.1.F1. [DOI] [PubMed] [Google Scholar]
  8. Brown P. A., Feinstein M. B., Sha'afi R. I. Membrane proteins related to water transport in human erythrocytes. Nature. 1975 Apr 10;254(5500):523–525. doi: 10.1038/254523a0. [DOI] [PubMed] [Google Scholar]
  9. Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem. 1987;22(4):317–387. doi: 10.3109/10409238709086960. [DOI] [PubMed] [Google Scholar]
  10. Dix J. A., Ausiello D. A., Jung C. Y., Verkman A. S. Target analysis studies of red cell water and urea transport. Biochim Biophys Acta. 1985 Dec 5;821(2):243–252. doi: 10.1016/0005-2736(85)90093-8. [DOI] [PubMed] [Google Scholar]
  11. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  12. Fischbarg J., Kuang K. Y., Hirsch J., Lecuona S., Rogozinski L., Silverstein S. C., Loike J. Evidence that the glucose transporter serves as a water channel in J774 macrophages. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8397–8401. doi: 10.1073/pnas.86.21.8397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fischbarg J., Kuang K. Y., Vera J. C., Arant S., Silverstein S. C., Loike J., Rosen O. M. Glucose transporters serve as water channels. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3244–3247. doi: 10.1073/pnas.87.8.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fischbarg J. On the possible permeation of water across the glucose transporter. Mol Cell Biochem. 1988 Jul-Aug;82(1-2):107–111. doi: 10.1007/BF00242524. [DOI] [PubMed] [Google Scholar]
  15. Garcia A. M., Lodish H. F. Lysine 539 of human band 3 is not essential for ion transport or inhibition by stilbene disulfonates. J Biol Chem. 1989 Nov 25;264(33):19607–19613. [PubMed] [Google Scholar]
  16. Handler J. S. Antidiuretic hormone moves membranes. Am J Physiol. 1988 Sep;255(3 Pt 2):F375–F382. doi: 10.1152/ajprenal.1988.255.3.F375. [DOI] [PubMed] [Google Scholar]
  17. Helgerson A. L., Carruthers A. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Biochemistry. 1989 May 30;28(11):4580–4594. doi: 10.1021/bi00437a012. [DOI] [PubMed] [Google Scholar]
  18. Janoshazi A., Solomon A. K. Interaction among anion, cation and glucose transport proteins in the human red cell. J Membr Biol. 1989 Nov;112(1):25–37. doi: 10.1007/BF01871161. [DOI] [PubMed] [Google Scholar]
  19. Jung E. K., Chin J. J., Jung C. Y. Structural basis of human erythrocyte glucose transporter function in reconstituted system. Hydrogen exchange. J Biol Chem. 1986 Jul 15;261(20):9155–9160. [PubMed] [Google Scholar]
  20. Kopito R. R., Lodish H. F. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature. 1985 Jul 18;316(6025):234–238. doi: 10.1038/316234a0. [DOI] [PubMed] [Google Scholar]
  21. Macey R. I. Transport of water and urea in red blood cells. Am J Physiol. 1984 Mar;246(3 Pt 1):C195–C203. doi: 10.1152/ajpcell.1984.246.3.C195. [DOI] [PubMed] [Google Scholar]
  22. Marcus-Sekura C. J. Techniques for using antisense oligodeoxyribonucleotides to study gene expression. Anal Biochem. 1988 Aug 1;172(2):289–295. doi: 10.1016/0003-2697(88)90447-2. [DOI] [PubMed] [Google Scholar]
  23. Melton D. A. Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci U S A. 1985 Jan;82(1):144–148. doi: 10.1073/pnas.82.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mueckler M., Lodish H. F. The human glucose transporter can insert posttranslationally into microsomes. Cell. 1986 Feb 28;44(4):629–637. doi: 10.1016/0092-8674(86)90272-2. [DOI] [PubMed] [Google Scholar]
  25. Ojcius D. M., Solomon A. K. Sites of p-chloromercuribenzenesulfonate inhibition of red cell urea and water transport. Biochim Biophys Acta. 1988 Jul 7;942(1):73–82. doi: 10.1016/0005-2736(88)90276-3. [DOI] [PubMed] [Google Scholar]
  26. Pinto da Silva P. Membrane intercalated particles in human erythrocyte ghosts: sites of preferred passage of water molecules at low temperature. Proc Natl Acad Sci U S A. 1973 May;70(5):1339–1343. doi: 10.1073/pnas.70.5.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shi L. B., Verkman A. S. Very high water permeability in vasopressin-induced endocytic vesicles from toad urinary bladder. J Gen Physiol. 1989 Dec;94(6):1101–1115. doi: 10.1085/jgp.94.6.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shi L. B., Wang Y. X., Verkman A. S. Regulation of the formation and water permeability of endosomes from toad bladder granular cells. J Gen Physiol. 1990 Oct;96(4):789–808. doi: 10.1085/jgp.96.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sigel E. Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol. 1990 Sep;117(3):201–221. doi: 10.1007/BF01868451. [DOI] [PubMed] [Google Scholar]
  30. Solomon A. K., Chasan B., Dix J. A., Lukacovic M. F., Toon M. R., Verkman A. S. The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann N Y Acad Sci. 1983;414:97–124. doi: 10.1111/j.1749-6632.1983.tb31678.x. [DOI] [PubMed] [Google Scholar]
  31. Thorens B., Lodish H. F., Brown D. Differential localization of two glucose transporter isoforms in rat kidney. Am J Physiol. 1990 Dec;259(6 Pt 1):C286–C294. doi: 10.1152/ajpcell.1990.259.2.C286. [DOI] [PubMed] [Google Scholar]
  32. Thorens B., Sarkar H. K., Kaback H. R., Lodish H. F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988 Oct 21;55(2):281–290. doi: 10.1016/0092-8674(88)90051-7. [DOI] [PubMed] [Google Scholar]
  33. Vera J. C., Rosen O. M. Functional expression of mammalian glucose transporters in Xenopus laevis oocytes: evidence for cell-dependent insulin sensitivity. Mol Cell Biol. 1989 Oct;9(10):4187–4195. doi: 10.1128/mcb.9.10.4187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Verkman A. S., Lencer W. I., Brown D., Ausiello D. A. Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature. 1988 May 19;333(6170):268–269. doi: 10.1038/333268a0. [DOI] [PubMed] [Google Scholar]
  35. Verkman A. S. Mechanisms and regulation of water permeability in renal epithelia. Am J Physiol. 1989 Nov;257(5 Pt 1):C837–C850. doi: 10.1152/ajpcell.1989.257.5.C837. [DOI] [PubMed] [Google Scholar]
  36. Verkman A. S., Weyer P., Brown D., Ausiello D. A. Functional water channels are present in clathrin-coated vesicles from bovine kidney but not from brain. J Biol Chem. 1989 Dec 5;264(34):20608–20613. [PubMed] [Google Scholar]
  37. Weiner I. D., Hamm L. L. Regulation of Cl-/HCO3- exchange in the rabbit cortical collecting tubule. J Clin Invest. 1991 May;87(5):1553–1558. doi: 10.1172/JCI115168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ye R. G., Shi L. B., Lencer W. I., Verkman A. S. Functional colocalization of water channels and proton pumps in endosomes from kidney proximal tubule. J Gen Physiol. 1989 May;93(5):885–902. doi: 10.1085/jgp.93.5.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhang R. B., Logee K. A., Verkman A. S. Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J Biol Chem. 1990 Sep 15;265(26):15375–15378. [PubMed] [Google Scholar]