A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.) (original) (raw)

1. Hawkesford MJ, Araus J-L, Park R, Calderini D, Miralles D, Shen T, et al. Prospects of doubling global wheat yields. Food Energy Security. 2013;2:34–48. doi: 10.1002/fes3.15. [CrossRef] [Google Scholar]

2. Villareal RL, Bañuelos O, Mujeeb-Kazi A, Rajaram S. Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica. 1998;103:195–202. doi: 10.1023/A:1018392002909. [CrossRef] [Google Scholar]

3. Kim W, Johnson JW, Baenziger PS, Lukaszewski AJ, Gaines CS. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 2004;44:1254–1258. doi: 10.2135/cropsci2004.1254. [CrossRef] [Google Scholar]

4. Zhou Y, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS. Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Sci. 2007;47:245–253. doi: 10.2135/cropsci2006.03.0175. [CrossRef] [Google Scholar]

5. Wilson S. Wheat and rye hybrids. Trans Botanical Soc Edinburgh. 1873;12:286–288. doi: 10.1080/03746607309469536. [CrossRef] [Google Scholar]

6. Ammar K, Mergoum M, Rajaram S. The history of triticale. In: Mergoum M, Gomez-Macpherson H, editors. Triticale: improvement and production. FAO, Rome: Italy; 2004. pp. 1–9. [Google Scholar]

7. Rabinovich SV. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica. 1998;100:323–340. doi: 10.1023/A:1018361819215. [CrossRef] [Google Scholar]

10. Faris JD, Friebe B, Gill BS. Wheat genomics: exploring the polyploid model. Curr Genomics. 2002;3:577–591. doi: 10.2174/1389202023350219. [CrossRef] [Google Scholar]

11. Matsuoka Y. Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 2011;52:750–764. doi: 10.1093/pcp/pcr018. [PubMed] [CrossRef] [Google Scholar]

12. Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T, et al. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. Plos ONE. 2014;9(3) doi: 10.1371/journal.pone.0085761. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W. Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet. 2002;3:429–441. [PubMed] [Google Scholar]

14. Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis MM, et al. Towards a whole-genome sequence for rye (Secale cereale L.) Plant J. 2017;89:853–869. doi: 10.1111/tpj.13436. [PubMed] [CrossRef] [Google Scholar]

15. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gary G, Qi L, et al. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.) Funct Integr Genomics. 2004;4:12–25. doi: 10.1007/s10142-004-0106-1. [PubMed] [CrossRef] [Google Scholar]

16. Lukaszewski AJ. Introgressions between wheat and rye. In: Molnár-Láng M, Ceoloni C, Dolezel J, editors. Alien introgression in wheat. Switzerland: Springer International Publishing; 2015. pp. 163–189. [Google Scholar]

17. Jiang J, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica. 1994;73:199–212. doi: 10.1007/BF00036700. [CrossRef] [Google Scholar]

18. Lukaszewski AJ, Gustafson JP. Translocations and modifications of chromosomes in triticale x wheat hybrids. Theor Appl Genet. 1983;64:239–248. doi: 10.1007/BF00303771. [PubMed] [CrossRef] [Google Scholar]

19. Jauhar PP, Chibbar RN. Chromosome-mediated and direct gene transfers in wheat. Genome. 1999;42:570–583. doi: 10.1139/g99-045. [CrossRef] [Google Scholar]

20. Sebesta EE, Wood EA. Transfer of greenbug resistance from rye to wheat with X-rays. Agron Abstr Madison WI. 1978;70:61–62. [Google Scholar]

21. Lapitan NLV, Sears RG, Gill BS. Translocations and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet. 1984;68:547–554. doi: 10.1007/BF00285012. [PubMed] [CrossRef] [Google Scholar]

22. Friebe B, Hatchett JH, Sears RG, Gill BS. Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor Appl Genet. 1990;79:385–389. doi: 10.1007/BF01186083. [PubMed] [CrossRef] [Google Scholar]

23. Lukaszewski AJ. Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theor Appl Genet. 1995;90:714–719. doi: 10.1007/BF00222138. [PubMed] [CrossRef] [Google Scholar]

24. Knight E, Greer E, Draeger T, Thole V, Reader S, Shaw P, et al. Inducing chromosome pairing through premature condensation: analysis of wheat interspecific hybrids. Funct Integr Genomics. 2010;10:603–608. doi: 10.1007/s10142-010-0185-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Ren T-H, Chen F, Yan B-J, Zhang H-Q, Ren Z-L. Genetic diversity of wheat-rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica. 2012;183:133–146. doi: 10.1007/s10681-011-0412-3. [CrossRef] [Google Scholar]

27. Andersson SC, Johansson E, Baum M, Rihawi F, El Bouhssini M. New resistance sources to Russian wheat aphid (Diuraphis noxia) in Swedish wheat substitution and translocation lines with rye (Secale cereale) and Leymus mollis. Czech J Genet Plant Breed. 2015;51:162–165. doi: 10.17221/72/2015-CJGPB. [CrossRef] [Google Scholar]

28. Pretorius ZA, Singh RP, Wagoire WW, Payne TS. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 2000;84:203. doi: 10.1094/PDIS.2000.84.2.203B. [PubMed] [CrossRef] [Google Scholar]

29. Singh RP, Hodson D, Huerta-Espino J, Jin Y, Njau P, Wanyere R, et al. Will stem rust destroy the world’s wheat crop? Adv Agron. 2008;98:271–309. doi: 10.1016/S0065-2113(08)00205-8. [CrossRef] [Google Scholar]

30. Rahmatov M, Rouse MN, Steffenson BJ, Andersson SC, Wanyera R, Pretorius ZA, et al. Sources of stem rust resistance in wheat-alien introgression lines. Plant Dis. 2016;100:1101–1109. doi: 10.1094/PDIS-12-15-1448-RE. [PubMed] [CrossRef] [Google Scholar]

31. Rahmatov M, Hovmøller MS, Nazari K, Andersson SC, Steffenson BJ, et al. Seedling and adult plant stripe rust resistance in diverse wheat-alien introgression lines. Crop Sci. 2016 [Google Scholar]

32. Kolmer JA. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol. 1996;34:435–455. doi: 10.1146/annurev.phyto.34.1.435. [PubMed] [CrossRef] [Google Scholar]

33. Ren SX, McIntosh RA, Sharp PJ, The TT. A storage-protein marker associated with the suppressor of Pm8 for powdery mildew resistance in wheat. Theor Appl Genet. 1996;93:1054–1060. doi: 10.1007/BF00230124. [PubMed] [CrossRef] [Google Scholar]

34. Zeller FJ, Hsam SLK. Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.) Theor Appl Genet. 1996;93:38–40. doi: 10.1007/BF00225724. [PubMed] [CrossRef] [Google Scholar]

35. Ren SX, McIntosh RA, Lu ZJ. Genetic suppression of the cereal rye-derived gene Pm8 in wheat. Euphytica. 1997;93:353–360. doi: 10.1023/A:1002923030266. [CrossRef] [Google Scholar]

36. McIntosh RA, Zhang P, Cowger C, Parks R, Lagudah ES, Hoxha S. Rye-derived powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus. Theor Appl Genet. 2011;123:359–367. doi: 10.1007/s00122-011-1589-5. [PubMed] [CrossRef] [Google Scholar]

37. Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D, McIntosh RA, et al. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat otholog Pm3. Plant J. 2014;79:904–913. doi: 10.1111/tpj.12593. [PubMed] [CrossRef] [Google Scholar]

38. Purnhauser L, Bóna L, Láng L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica. 2011;179:287–295. doi: 10.1007/s10681-010-0312-y. [CrossRef] [Google Scholar]

39. Lu Q, Björnstad Å, Ren Y, Asad MA, Xia X, Chen X, et al. Partial resistance to powdery mildew in German spring wheat ‘Naxos’ is based on multiple genes with stable effects in diverse environments. Theor Appl Genet. 2012;125:297–309. doi: 10.1007/s00122-012-1834-6. [PubMed] [CrossRef] [Google Scholar]

40. Burd JD, Porter DR. Biotypic diversity in greenbug (Hemiptera: Aphididae): characterizing new virulence and host associations. J Econ Entomol. 2006;99:959–965. doi: 10.1093/jee/99.3.959. [PubMed] [CrossRef] [Google Scholar]

41. Lu H, Rudd JC, Burd JD, Weng Y. Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations. Plant Breed. 2010;129:472–476. [Google Scholar]

42. Weng Y, Perumal A, Burd JD, Rudd JC. Biotypic diversity in greenbug (Hemiptera: Aphididae): Microsatellite-based regional divergence and host-adapted differentiation. J Econ Entomol. 2010;103:1454–1463. doi: 10.1603/EC09291. [PubMed] [CrossRef] [Google Scholar]

43. Haley SD, Peairs FB, Walker CB, Rudolph JB, Randolph TL. Occurrence of a new Russian wheat aphid biotype in Colorado. Crop Sci. 2004;44:1589–1592. doi: 10.2135/cropsci2004.1589. [CrossRef] [Google Scholar]

44. Burd JD, Porter DR, Puterka GJ, Haley SD, Peairs FB. Biotypic variation among north American Russian wheat aphid (Homoptera: Aphididae) populations. J Econ Entomol. 2006;99:1862–1866. doi: 10.1093/jee/99.5.1862. [PubMed] [CrossRef] [Google Scholar]

45. Weiland AA, Peairs FB, Randolph TL, Rudolph JB, Haley SD, Puterka GJ. Biotypic diversity in Colorado Russian wheat aphid (Hemiptera: Aphididae) populations. J Econ Entomol. 2008;101:569–574. doi: 10.1093/jee/101.2.569. [PubMed] [CrossRef] [Google Scholar]

46. Lukaszewski AJ. Reconstruction in wheat of complete chromosomes 1B and 1R from the 1RS.1BL translocation of ‘Kavkaz’ origin. Genome. 1993;36:821–824. doi: 10.1139/g93-109. [PubMed] [CrossRef] [Google Scholar]

47. Lukaszewski AJ. Further manipulation by centric misdivision of the 1RS.1BL translocation in wheat. Euphytica. 1997;94:257–261. doi: 10.1023/A:1002916323085. [CrossRef] [Google Scholar]

48. Lukaszewski AJ. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 2000;40:216–225. doi: 10.2135/cropsci2000.401216x. [CrossRef] [Google Scholar]

49. Lukaszewski AJ. Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci. 2006;46:2183–2194. doi: 10.2135/cropsci2006.03.0135. [CrossRef] [Google Scholar]

50. Lukaszewski AJ. Unexpected behavior of an inverted rye chromosome arm in wheat. Chromosoma. 2008;117:569–578. doi: 10.1007/s00412-008-0174-4. [PubMed] [CrossRef] [Google Scholar]

51. Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R. Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome. 2004;47:36–45. doi: 10.1139/g03-089. [PubMed] [CrossRef] [Google Scholar]

52. Zhang P, Friebe B, Lukaszewski AJ, Gill BS. The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma. 2001;110:335–344. doi: 10.1007/s004120100159. [PubMed] [CrossRef] [Google Scholar]

53. Hoffmann B. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res Comm. 2008;36:269–278. doi: 10.1556/CRC.36.2008.2.7. [CrossRef] [Google Scholar]

54. Waines JG, Ehdaie B. Domestication and crop physiology: Roots of green-revolution wheat. Ann Bot. 2007;100:991–998. doi: 10.1093/aob/mcm180. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Karki D, Wyant W, III, Berzonsky WA, Glover KD. Investigating physiological and morphological mechanisms of drought tolerance in wheat (Triticum aestivum L.) lines with 1RS translocation. Am J Plant Sci. 2014;5:1936–1944. doi: 10.4236/ajps.2014.513207. [CrossRef] [Google Scholar]

56. Monneveux P, Reynolds MP, Zaharieva M, Mujeeb-Kazi A. Effect of T1BL.1RS chromosome translocation on bread wheat grain yield and physiological related traits in a warm environment. Cereal Res Comm. 2003;31:371–8. Cereal Research Institute, Szeged, Hungary. http://www.jstor.org/stable/23786980.

57. Kumlay AM, Baenziger PS, Gill KS, Shelton DR, Graybosch RA, Lukaszewski AJ, et al. Understanding the effect of rye chromatin in bread wheat. Crop Sci. 2003;43:1643–1651. doi: 10.2135/cropsci2003.1643. [CrossRef] [Google Scholar]

58. Carver BF, Ownby JD. Acid soil tolerance in wheat. In: Donald LS, editor. Advances in Agronomy. Vol. 54. Academic Press; 1995. p. 117–173. http://dx.doi.org/10.1016/S0065-2113(08)60899-8.

59. Cakmak I, Derici R, Torun B, Tolay I, Braun HJ, Schlegel R. Role of rye chromosomes in improvement of zinc efficiency in wheat and triticale. Plant Soil. 1997;196:249–253. doi: 10.1023/A:1004210309876. [CrossRef] [Google Scholar]

60. Schlegel R, Werner T, Hülgenhof E. Confirmation of a 4BL/5RL Wheat-rye chromosome translocation line in the wheat cultivar ‘Viking’ showing high copper efficiency. Plant Breed. 1991;107:226–234. doi: 10.1111/j.1439-0523.1991.tb01210.x. [CrossRef] [Google Scholar]

61. Bertholdsson N-O, Andersson SC, Merker A. Allelopathic potential of Triticum spp., Secale spp. and Triticosecale spp. and use of chromosome substitutions and translocations to improve weed suppression ability in winter wheat. Plant Breed. 2012;131:75–80. doi: 10.1111/j.1439-0523.2011.01895.x. [CrossRef] [Google Scholar]

62. Singh RP. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathol. 1992;82:835–838. doi: 10.1094/Phyto-82-835. [CrossRef] [Google Scholar]

63. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, et al. A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat. Science. 2009;323:1360–1363. doi: 10.1126/science.1166453. [PubMed] [CrossRef] [Google Scholar]

64. Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, et al. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet. 2011;122:239–249. doi: 10.1007/s00122-010-1439-x. [PubMed] [CrossRef] [Google Scholar]

65. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59–87. doi: 10.1007/BF00035277. [CrossRef] [Google Scholar]

66. Singh RP, Rajaram S. Resistance to Puccinia recondita f. sp. tritici in 50 Mexican bread wheat cultivars. Crop Sci. 1991;31:1472–1479. doi: 10.2135/cropsci1991.0011183X003100060016x. [CrossRef] [Google Scholar]

67. Singh A, Pallavi JK, Gupta P, Prabhu KV. Identification of microsatellite markers linked to leaf rust resistance gene Lr25 in wheat. J Appl Genet. 2012;53:19–25. doi: 10.1007/s13353-011-0070-0. [PubMed] [CrossRef] [Google Scholar]

68. McIntosh RA, Friebe B, Jiang J, The D. Gill BS. Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica. 1995;82:141–147. doi: 10.1007/BF00027060. [CrossRef] [Google Scholar]

69. Hysing SC, Hsam SLK, Singh RP, Huerta-Espino J, Boyd LA, Koebner RMD, et al. Agronomic performance and multiple disease resistance in T2BS.2RL wheat-rye translocation lines. Crop Sci. 2007;47:254–260. doi: 10.2135/cropsci2006.04.0269. [CrossRef] [Google Scholar]

70. Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet. 2002;104:1317–1324. doi: 10.1007/s00122-002-0879-3. [PubMed] [CrossRef] [Google Scholar]

71. Luo PG, Zhang HY, Shu K, Zhang HQ, Luo HY, Ren ZL. Stripe rust (Puccinia striiformis f. sp. tritici) resistance in wheat with the wheat-rye 1BL/1RS chromosomal translocation. Can J Plant Pathol. 2008;30:254–259. doi: 10.1080/07060661.2008.10540540. [CrossRef] [Google Scholar]

72. Ren T-H, Yang Z-J, Yan B-J, Zhang H-Q, Fu S-L, Ren Z-L. Development and characterization of a new 1BL. 1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica. 2009;169:207–213. doi: 10.1007/s10681-009-9924-5. [CrossRef] [Google Scholar]

73. Yang E, Li G, Li L, Zhang Z, Yang W, Peng Y, et al. Characterisation of stripe rust resistance genes in the wheat cultivar Chuanmai45. Int J Mol Sci. 2016;17:601. doi: 10.3390/ijms17040601. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Li Z, Ren Z, Tan F, Tang Z, Fu S, Yan B, et al. Molecular cytogenetic characterization of new wheat-rye 1R(1B) substitution and translocation lines from a Chinese Secale cereal L. Aigan with resistance to stripe rust. PLoS One. 2016;11(9) doi: 10.1371/journal.pone.0163642. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Rahmatov M, Rouse MN, Nirmala J, Danilova T, Friebe B, Steffenson BJ, et al. A new 2DS.2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theor Appl Genet. 2016;129:1383–1392. doi: 10.1007/s00122-016-2710-6. [PubMed] [CrossRef] [Google Scholar]

76. Marais GF, Marais AS. The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica. 1994;79:75–80. doi: 10.1007/BF00023578. [CrossRef] [Google Scholar]

77. Mohler V, Hsam S, Zeller F, Wenzel G. An STS marker distinguishing the rye‐derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed. 2001;120:448–450. doi: 10.1046/j.1439-0523.2001.00622.x. [CrossRef] [Google Scholar]

78. An D-G, Li L-H, Li J-M, Li H-J, Zhu Y-G. Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. J Integr Plant Biol. 2006;48:838–847. doi: 10.1111/j.1744-7909.2006.00275.x. [CrossRef] [Google Scholar]

79. Zhuang LF, Sun L, Li AX, Chen TT, Qi ZJ. Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai. Mol Breed. 2011;27:455–465. doi: 10.1007/s11032-010-9443-z. [CrossRef] [Google Scholar]

80. Porter DR, Webster JA, Burton RL, Puterka GJ, Smith EL. New sources of resistance to greenbug in wheat. Crop Sci. 1991;31:1502–1504. doi: 10.2135/cropsci1991.0011183X003100060021x. [CrossRef] [Google Scholar]

81. Porter DR, Webster JA, Friebe B. Inheritance of greenbug biotype-G resistance in wheat. Crop Sci. 1994;34:625–628. doi: 10.2135/cropsci1994.0011183X003400030004x. [CrossRef] [Google Scholar]

82. Lapitan NLV, Peng J, Sharma V. A high-density map and PCR markers for Russian wheat aphid resistance gene Dn7 on chromosome 1RS/1BL. Crop Sci. 2007;47:811–820. doi: 10.2135/cropsci2006.08.0529. [CrossRef] [Google Scholar]

83. Marais GF, Horn M, Du Toit F. Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breed. 1994;113:265–271. doi: 10.1111/j.1439-0523.1994.tb00735.x. [CrossRef] [Google Scholar]

84. Crespo-Herrera L, Smith CM, Singh R, Åhman I. Resistance to multiple cereal aphids in wheat–alien substitution and translocation lines. Arthropod Plant Interact. 2013;7:535–545. doi: 10.1007/s11829-013-9267-y. [CrossRef] [Google Scholar]

85. Malik R, Brown-Guedira GL, Smith CM, Harvey TL, Gill BS. Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Sci. 2003;43:644–650. doi: 10.2135/cropsci2003.0644. [CrossRef] [Google Scholar]

86. An D, Zheng Q, Zhou Y, Ma P, Lv Z, Li L, et al. Molecular cytogenetic characterization of a new wheat–rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res. 2013;21:419–432. doi: 10.1007/s10577-013-9366-8. [PubMed] [CrossRef] [Google Scholar]

87. Fu S, Ren Z, Chen X, Yan B, Tan F, Fu T, et al. New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance. J Plant Res. 2014;127:743–753. doi: 10.1007/s10265-014-0659-6. [PubMed] [CrossRef] [Google Scholar]

88. An D, Zheng Q, Luo Q, Ma P, Zhang H, Li L, et al. Molecular cytogenetic identification of a new wheat-rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS One. 2015;10(8) doi: 10.1371/journal.pone.0134534. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Friebe B, Hatchett JH, Gill BS, Mukai Y, Sebesta EE. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor Appl Genet. 1991;83:33–40. doi: 10.1007/BF00229223. [PubMed] [CrossRef] [Google Scholar]

90. Dundas IS, Frappell DE, Crack DM, Fisher JM. Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Sci. 2001;41:1771–1778. doi: 10.2135/cropsci2001.1771. [CrossRef] [Google Scholar]

91. Cui L, Xiu G, XiaoMing W, Heng J, WenHua T, HongLian L, et al. Characterization of interaction between wheat roots with different resistance and Heterodera filipjevi. Acta Agron Sin. 2012; 38:1009 English abstract.