Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm (original) (raw)

Abstract

The thiol/disulfide oxidoreductase DsbA is the strongest oxidant of the thioredoxin superfamily and is required for efficient disulfide bond formation in the periplasm of Escherichia coli. To determine the importance of the redox potential of the final oxidant in periplasmic protein folding, we have investigated the ability of the most reducing thiol/disulfide oxidoreductase, E.coli thioredoxin, of complementing DsbA deficiency when secreted to the periplasm. In addition, we secreted thioredoxin variants with increased redox potentials as well as the catalytic a-domain of human protein disulfide isomerase (PDI) to the periplasm. While secreted wild-type thioredoxin and the most reducing thioredoxin variant could not replace DsbA, all more oxidizing thioredoxin variants as well as the PDI a-domain could complement DsbA deficiency in a DsbB-dependent manner. There is an excellent agreement between the activity of the secreted thioredoxin variants in vivo and their ability to oxidize polypeptides fast and quantitatively in vitro. We conclude that the redox potential of the direct oxidant of folding proteins and in particular its reactivity towards reduced polypeptides are crucial for efficient oxidative protein folding in the bacterial periplasm.

Full Text

The Full Text of this article is available as a PDF (339.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajouz B., Berrier C., Garrigues A., Besnard M., Ghazi A. Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem. 1998 Oct 9;273(41):26670–26674. doi: 10.1074/jbc.273.41.26670. [DOI] [PubMed] [Google Scholar]
  2. Akiyama Y., Kamitani S., Kusukawa N., Ito K. In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA (ppfA) gene product. J Biol Chem. 1992 Nov 5;267(31):22440–22445. [PubMed] [Google Scholar]
  3. Andersen J. F., Sanders D. A., Gasdaska J. R., Weichsel A., Powis G., Montfort W. R. Human thioredoxin homodimers: regulation by pH, role of aspartate 60, and crystal structure of the aspartate 60 --> asparagine mutant. Biochemistry. 1997 Nov 18;36(46):13979–13988. doi: 10.1021/bi971004s. [DOI] [PubMed] [Google Scholar]
  4. Aslund F., Berndt K. D., Holmgren A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem. 1997 Dec 5;272(49):30780–30786. doi: 10.1074/jbc.272.49.30780. [DOI] [PubMed] [Google Scholar]
  5. Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bader M., Muse W., Zander T., Bardwell J. Reconstitution of a protein disulfide catalytic system. J Biol Chem. 1998 Apr 24;273(17):10302–10307. doi: 10.1074/jbc.273.17.10302. [DOI] [PubMed] [Google Scholar]
  7. Bardwell J. C., Lee J. O., Jander G., Martin N., Belin D., Beckwith J. A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1038–1042. doi: 10.1073/pnas.90.3.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
  9. Chivers P. T., Laboissière M. C., Raines R. T. The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J. 1996 Jun 3;15(11):2659–2667. [PMC free article] [PubMed] [Google Scholar]
  10. Dailey F. E., Berg H. C. Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1043–1047. doi: 10.1073/pnas.90.3.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Darby N. J., Creighton T. E. Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase. Biochemistry. 1995 Dec 26;34(51):16770–16780. doi: 10.1021/bi00051a027. [DOI] [PubMed] [Google Scholar]
  12. Darby N. J., Creighton T. E. Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. Biochemistry. 1995 Sep 19;34(37):11725–11735. doi: 10.1021/bi00037a009. [DOI] [PubMed] [Google Scholar]
  13. Darby N. J., Raina S., Creighton T. E. Contributions of substrate binding to the catalytic activity of DsbC. Biochemistry. 1998 Jan 20;37(3):783–791. doi: 10.1021/bi971888f. [DOI] [PubMed] [Google Scholar]
  14. Debarbieux L., Beckwith J. The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10751–10756. doi: 10.1073/pnas.95.18.10751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Derman A. I., Prinz W. A., Belin D., Beckwith J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science. 1993 Dec 10;262(5140):1744–1747. doi: 10.1126/science.8259521. [DOI] [PubMed] [Google Scholar]
  16. Fabianek R. A., Hennecke H., Thöny-Meyer L. The active-site cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo. J Bacteriol. 1998 Apr;180(7):1947–1950. doi: 10.1128/jb.180.7.1947-1950.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Frand A. R., Kaiser C. A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell. 1998 Jan;1(2):161–170. doi: 10.1016/s1097-2765(00)80017-9. [DOI] [PubMed] [Google Scholar]
  18. Freedman R. B., Hawkins H. C., McLaughlin S. H. Protein disulfide-isomerase. Methods Enzymol. 1995;251:397–406. doi: 10.1016/0076-6879(95)51143-1. [DOI] [PubMed] [Google Scholar]
  19. Froshauer S., Green G. N., Boyd D., McGovern K., Beckwith J. Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J Mol Biol. 1988 Apr 5;200(3):501–511. doi: 10.1016/0022-2836(88)90539-6. [DOI] [PubMed] [Google Scholar]
  20. Gilbert H. F. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol. 1990;63:69–172. doi: 10.1002/9780470123096.ch2. [DOI] [PubMed] [Google Scholar]
  21. Gilbert H. F. Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol. 1995;251:8–28. doi: 10.1016/0076-6879(95)51107-5. [DOI] [PubMed] [Google Scholar]
  22. Grauschopf U., Winther J. R., Korber P., Zander T., Dallinger P., Bardwell J. C. Why is DsbA such an oxidizing disulfide catalyst? Cell. 1995 Dec 15;83(6):947–955. doi: 10.1016/0092-8674(95)90210-4. [DOI] [PubMed] [Google Scholar]
  23. Guddat L. W., Bardwell J. C., Martin J. L. Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure. 1998 Jun 15;6(6):757–767. doi: 10.1016/s0969-2126(98)00077-x. [DOI] [PubMed] [Google Scholar]
  24. Guilhot C., Jander G., Martin N. L., Beckwith J. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9895–9899. doi: 10.1073/pnas.92.21.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hennecke J., Sebbel P., Glockshuber R. Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. J Mol Biol. 1999 Mar 5;286(4):1197–1215. doi: 10.1006/jmbi.1998.2531. [DOI] [PubMed] [Google Scholar]
  26. Holmgren A., Björnstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199–208. doi: 10.1016/0076-6879(95)52023-6. [DOI] [PubMed] [Google Scholar]
  27. Holst B., Tachibana C., Winther J. R. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum. J Cell Biol. 1997 Sep 22;138(6):1229–1238. doi: 10.1083/jcb.138.6.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Huber-Wunderlich M., Glockshuber R. A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold Des. 1998;3(3):161–171. doi: 10.1016/S1359-0278(98)00024-8. [DOI] [PubMed] [Google Scholar]
  29. Humphreys D. P., Weir N., Mountain A., Lund P. A. Human protein disulfide isomerase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli. J Biol Chem. 1995 Nov 24;270(47):28210–28215. doi: 10.1074/jbc.270.47.28210. [DOI] [PubMed] [Google Scholar]
  30. Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
  31. Jacobi A., Huber-Wunderlich M., Hennecke J., Glockshuber R. Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties. J Biol Chem. 1997 Aug 29;272(35):21692–21699. doi: 10.1074/jbc.272.35.21692. [DOI] [PubMed] [Google Scholar]
  32. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  33. Kemmink J., Darby N. J., Dijkstra K., Nilges M., Creighton T. E. Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy. Biochemistry. 1996 Jun 18;35(24):7684–7691. doi: 10.1021/bi960335m. [DOI] [PubMed] [Google Scholar]
  34. Kemmink J., Darby N. J., Dijkstra K., Nilges M., Creighton T. E. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr Biol. 1997 Apr 1;7(4):239–245. doi: 10.1016/s0960-9822(06)00119-9. [DOI] [PubMed] [Google Scholar]
  35. Kishigami S., Akiyama Y., Ito K. Redox states of DsbA in the periplasm of Escherichia coli. FEBS Lett. 1995 May 1;364(1):55–58. doi: 10.1016/0014-5793(95)00354-c. [DOI] [PubMed] [Google Scholar]
  36. Kishigami S., Ito K. Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli. Genes Cells. 1996 Feb;1(2):201–208. doi: 10.1046/j.1365-2443.1996.d01-233.x. [DOI] [PubMed] [Google Scholar]
  37. Kishigami S., Kanaya E., Kikuchi M., Ito K. DsbA-DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA. J Biol Chem. 1995 Jul 21;270(29):17072–17074. doi: 10.1074/jbc.270.29.17072. [DOI] [PubMed] [Google Scholar]
  38. Kobayashi T., Kishigami S., Sone M., Inokuchi H., Mogi T., Ito K. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11857–11862. doi: 10.1073/pnas.94.22.11857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kortemme T., Darby N. J., Creighton T. E. Electrostatic interactions in the active site of the N-terminal thioredoxin-like domain of protein disulfide isomerase. Biochemistry. 1996 Nov 19;35(46):14503–14511. doi: 10.1021/bi9617724. [DOI] [PubMed] [Google Scholar]
  40. Krause G., Lundström J., Barea J. L., Pueyo de la Cuesta C., Holmgren A. Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J Biol Chem. 1991 May 25;266(15):9494–9500. [PubMed] [Google Scholar]
  41. Laboissière M. C., Chivers P. T., Raines R. T. Production of rat protein disulfide isomerase in Saccharomyces cerevisiae. Protein Expr Purif. 1995 Oct;6(5):700–706. doi: 10.1006/prep.1995.1092. [DOI] [PubMed] [Google Scholar]
  42. Lin T. Y., Kim P. S. Urea dependence of thiol-disulfide equilibria in thioredoxin: confirmation of the linkage relationship and a sensitive assay for structure. Biochemistry. 1989 Jun 13;28(12):5282–5287. doi: 10.1021/bi00438a054. [DOI] [PubMed] [Google Scholar]
  43. Lundström J., Holmgren A. Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry. 1993 Jul 6;32(26):6649–6655. doi: 10.1021/bi00077a018. [DOI] [PubMed] [Google Scholar]
  44. Lunn C. A., Pigiet V. P. Localization of thioredoxin from Escherichia coli in an osmotically sensitive compartment. J Biol Chem. 1982 Oct 10;257(19):11424–11430. [PubMed] [Google Scholar]
  45. Martin J. L. Thioredoxin--a fold for all reasons. Structure. 1995 Mar 15;3(3):245–250. doi: 10.1016/s0969-2126(01)00154-x. [DOI] [PubMed] [Google Scholar]
  46. Missiakas D., Georgopoulos C., Raina S. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J. 1994 Apr 15;13(8):2013–2020. doi: 10.1002/j.1460-2075.1994.tb06471.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mössner E., Huber-Wunderlich M., Glockshuber R. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases. Protein Sci. 1998 May;7(5):1233–1244. doi: 10.1002/pro.5560070519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ostermeier M., De Sutter K., Georgiou G. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J Biol Chem. 1996 May 3;271(18):10616–10622. doi: 10.1074/jbc.271.18.10616. [DOI] [PubMed] [Google Scholar]
  49. Pigiet V. P., Schuster B. J. Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7643–7647. doi: 10.1073/pnas.83.20.7643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Pollard M. G., Travers K. J., Weissman J. S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell. 1998 Jan;1(2):171–182. doi: 10.1016/s1097-2765(00)80018-0. [DOI] [PubMed] [Google Scholar]
  51. Raina S., Missiakas D. Making and breaking disulfide bonds. Annu Rev Microbiol. 1997;51:179–202. doi: 10.1146/annurev.micro.51.1.179. [DOI] [PubMed] [Google Scholar]
  52. Rietsch A., Beckwith J. The genetics of disulfide bond metabolism. Annu Rev Genet. 1998;32:163–184. doi: 10.1146/annurev.genet.32.1.163. [DOI] [PubMed] [Google Scholar]
  53. Rietsch A., Belin D., Martin N., Beckwith J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13048–13053. doi: 10.1073/pnas.93.23.13048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rietsch A., Bessette P., Georgiou G., Beckwith J. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol. 1997 Nov;179(21):6602–6608. doi: 10.1128/jb.179.21.6602-6608.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rodríguez-Peña J. M., Alvarez I., Ibáez M., Rotger R. Homologous regions of the Salmonella enteritidis virulence plasmid and the chromosome of Salmonella typhi encode thiol: disulphide oxidoreductases belonging to the DsbA thioredoxin family. Microbiology. 1997 Apr;143(Pt 4):1405–1413. doi: 10.1099/00221287-143-4-1405. [DOI] [PubMed] [Google Scholar]
  56. Wunderlich M., Glockshuber R. In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA). J Biol Chem. 1993 Nov 25;268(33):24547–24550. [PubMed] [Google Scholar]
  57. Wunderlich M., Glockshuber R. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 1993 May;2(5):717–726. doi: 10.1002/pro.5560020503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wunderlich M., Otto A., Maskos K., Mücke M., Seckler R., Glockshuber R. Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol. 1995 Mar 17;247(1):28–33. doi: 10.1006/jmbi.1995.0119. [DOI] [PubMed] [Google Scholar]
  59. Wunderlich M., Otto A., Seckler R., Glockshuber R. Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acidic pH. Biochemistry. 1993 Nov 16;32(45):12251–12256. doi: 10.1021/bi00096a039. [DOI] [PubMed] [Google Scholar]
  60. Zapun A., Bardwell J. C., Creighton T. E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry. 1993 May 18;32(19):5083–5092. doi: 10.1021/bi00070a016. [DOI] [PubMed] [Google Scholar]
  61. Zapun A., Creighton T. E. Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and alpha-lactalbumin. Biochemistry. 1994 May 3;33(17):5202–5211. doi: 10.1021/bi00183a025. [DOI] [PubMed] [Google Scholar]
  62. Zapun A., Missiakas D., Raina S., Creighton T. E. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry. 1995 Apr 18;34(15):5075–5089. doi: 10.1021/bi00015a019. [DOI] [PubMed] [Google Scholar]
  63. van Straaten M., Missiakas D., Raina S., Darby N. J. The functional properties of DsbG, a thiol-disulfide oxidoreductase from the periplasm of Escherichia coli. FEBS Lett. 1998 May 29;428(3):255–258. doi: 10.1016/s0014-5793(98)00539-0. [DOI] [PubMed] [Google Scholar]