Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status (original) (raw)

Abstract

p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (_r_= 0.880,_P_= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign

Keywords: 5-FU sensitivity, p53 status, mdm2, G1/S arrest, Bcl-2/Bax ratio

Full Text

The Full Text of this article is available as a PDF (124.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar-Santelises M., Rottenberg M. E., Lewin N., Mellstedt H., Jondal M. Bcl-2, Bax and p53 expression in B-CLL in relation to in vitro survival and clinical progression. Int J Cancer. 1996 Apr 22;69(2):114–119. doi: 10.1002/(SICI)1097-0215(19960422)69:2<114::AID-IJC8>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  2. Ara S., Lee P. S., Hansen M. F., Saya H. Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res. 1990 Aug 25;18(16):4961–4961. doi: 10.1093/nar/18.16.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arrowsmith C. H., Morin P. New insights into p53 function from structural studies. Oncogene. 1996 Apr 4;12(7):1379–1385. [PubMed] [Google Scholar]
  4. Barak Y., Gottlieb E., Juven-Gershon T., Oren M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 1994 Aug 1;8(15):1739–1749. doi: 10.1101/gad.8.15.1739. [DOI] [PubMed] [Google Scholar]
  5. Barak Y., Juven T., Haffner R., Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J. 1993 Feb;12(2):461–468. doi: 10.1002/j.1460-2075.1993.tb05678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barberi-Heyob M., Griffon G., Merlin J. L., Weber B. Sequence-dependent growth-inhibitory effects of the in vitro combination of fluorouracil, cisplatin, and dipyridamole. Cancer Chemother Pharmacol. 1993;33(2):163–170. doi: 10.1007/BF00685336. [DOI] [PubMed] [Google Scholar]
  7. Beck A., Etienne M. C., Chéradame S., Fischel J. L., Formento P., Renée N., Milano G. A role for dihydropyrimidine dehydrogenase and thymidylate synthase in tumour sensitivity to fluorouracil. Eur J Cancer. 1994;30A(10):1517–1522. doi: 10.1016/0959-8049(94)00216-r. [DOI] [PubMed] [Google Scholar]
  8. Boshart M., Gissmann L., Ikenberg H., Kleinheinz A., Scheurlen W., zur Hausen H. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 1984 May;3(5):1151–1157. doi: 10.1002/j.1460-2075.1984.tb01944.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cho Y., Gorina S., Jeffrey P. D., Pavletich N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994 Jul 15;265(5170):346–355. doi: 10.1126/science.8023157. [DOI] [PubMed] [Google Scholar]
  10. Crook T., Tidy J. A., Vousden K. H. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell. 1991 Nov 1;67(3):547–556. doi: 10.1016/0092-8674(91)90529-8. [DOI] [PubMed] [Google Scholar]
  11. Deffie A., Wu H., Reinke V., Lozano G. The tumor suppressor p53 regulates its own transcription. Mol Cell Biol. 1993 Jun;13(6):3415–3423. doi: 10.1128/mcb.13.6.3415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dou Q. P., An B., Will P. L. Induction of a retinoblastoma phosphatase activity by anticancer drugs accompanies p53-independent G1 arrest and apoptosis. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9019–9023. doi: 10.1073/pnas.92.20.9019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elbendary A. A., Cirisano F. D., Evans A. C., Jr, Davis P. L., Iglehart J. D., Marks J. R., Berchuck A. Relationship between p21 expression and mutation of the p53 tumor suppressor gene in normal and malignant ovarian epithelial cells. Clin Cancer Res. 1996 Sep;2(9):1571–1575. [PubMed] [Google Scholar]
  14. Etienne M. C., Pivot X., Formento J. L., Bensadoun R. J., Formento P., Dassonville O., Francoual M., Poissonnet G., Fontana X., Schneider M. A multifactorial approach including tumoural epidermal growth factor receptor, p53, thymidylate synthase and dihydropyrimidine dehydrogenase to predict treatment outcome in head and neck cancer patients receiving 5-fluorouracil. Br J Cancer. 1999 Apr;79(11-12):1864–1869. doi: 10.1038/sj.bjc.6690297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ewen M. E., Miller S. J. p53 and translational control. Biochim Biophys Acta. 1996 Mar 18;1242(3):181–184. doi: 10.1016/0304-419x(95)00010-d. [DOI] [PubMed] [Google Scholar]
  16. Fisher T. C., Milner A. E., Gregory C. D., Jackman A. L., Aherne G. W., Hartley J. A., Dive C., Hickman J. A. bcl-2 modulation of apoptosis induced by anticancer drugs: resistance to thymidylate stress is independent of classical resistance pathways. Cancer Res. 1993 Jul 15;53(14):3321–3326. [PubMed] [Google Scholar]
  17. Fu L., Minden M. D., Benchimol S. Translational regulation of human p53 gene expression. EMBO J. 1996 Aug 15;15(16):4392–4401. [PMC free article] [PubMed] [Google Scholar]
  18. Gorgoulis V. G., Zacharatos P. V., Manolis E., Ikonomopoulos J. A., Damalas A., Lamprinopoulos C., Rassidakis G. Z., Zoumpourlis V., Kotsinas A., Rassidakis A. N. Effects of p53 mutants derived from lung carcinomas on the p53-responsive element (p53RE) of the MDM2 gene. Br J Cancer. 1998;77(3):374–384. doi: 10.1038/bjc.1998.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guillouf C., Graña X., Selvakumaran M., De Luca A., Giordano A., Hoffman B., Liebermann D. A. Dissection of the genetic programs of p53-mediated G1 growth arrest and apoptosis: blocking p53-induced apoptosis unmasks G1 arrest. Blood. 1995 May 15;85(10):2691–2698. [PubMed] [Google Scholar]
  20. Güssow D., Rein R., Ginjaar I., Hochstenbach F., Seemann G., Kottman A., Ploegh H. L. The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit. J Immunol. 1987 Nov 1;139(9):3132–3138. [PubMed] [Google Scholar]
  21. Harris C. C. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst. 1996 Oct 16;88(20):1442–1455. doi: 10.1093/jnci/88.20.1442. [DOI] [PubMed] [Google Scholar]
  22. Hudson J. M., Frade R., Bar-Eli M. Wild-type p53 regulates its own transcription in a cell-type specific manner. DNA Cell Biol. 1995 Sep;14(9):759–766. doi: 10.1089/dna.1995.14.759. [DOI] [PubMed] [Google Scholar]
  23. Huibregtse J. M., Scheffner M., Howley P. M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol. 1993 Feb;13(2):775–784. doi: 10.1128/mcb.13.2.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  25. Kirihara Y., Yamamoto W., Toge T., Nishiyama M. Dihydropyrimidine dehydrogenase, multidrug resistance-associated protein, and thymidylate synthase gene expression levels can predict 5-fluorouracil resistance in human gastrointestinal cancer cells. Int J Oncol. 1999 Mar;14(3):551–556. doi: 10.3892/ijo.14.3.551. [DOI] [PubMed] [Google Scholar]
  26. Koshiji M., Adachi Y., Taketani S., Takeuchi K., Hioki K., Ikehara S. Mechanisms underlying apoptosis induced by combination of 5-fluorouracil and interferon-gamma. Biochem Biophys Res Commun. 1997 Nov 17;240(2):376–381. doi: 10.1006/bbrc.1997.7657. [DOI] [PubMed] [Google Scholar]
  27. Kren B. T., Trembley J. H., Steer C. J. Alterations in mRNA stability during rat liver regeneration. Am J Physiol. 1996 May;270(5 Pt 1):G763–G777. doi: 10.1152/ajpgi.1996.270.5.G763. [DOI] [PubMed] [Google Scholar]
  28. Kubbutat M. H., Jones S. N., Vousden K. H. Regulation of p53 stability by Mdm2. Nature. 1997 May 15;387(6630):299–303. doi: 10.1038/387299a0. [DOI] [PubMed] [Google Scholar]
  29. Kuerbitz S. J., Plunkett B. S., Walsh W. V., Kastan M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7491–7495. doi: 10.1073/pnas.89.16.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Loignon M., Fetni R., Gordon A. J., Drobetsky E. A. A p53-independent pathway for induction of p21waf1cip1 and concomitant G1 arrest in UV-irradiated human skin fibroblasts. Cancer Res. 1997 Aug 15;57(16):3390–3394. [PubMed] [Google Scholar]
  31. Lowe S. W., Ruley H. E., Jacks T., Housman D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993 Sep 24;74(6):957–967. doi: 10.1016/0092-8674(93)90719-7. [DOI] [PubMed] [Google Scholar]
  32. Macleod K. F., Sherry N., Hannon G., Beach D., Tokino T., Kinzler K., Vogelstein B., Jacks T. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 1995 Apr 15;9(8):935–944. doi: 10.1101/gad.9.8.935. [DOI] [PubMed] [Google Scholar]
  33. Massimi P., Banks L. Repression of p53 transcriptional activity by the HPV E7 proteins. Virology. 1997 Jan 6;227(1):255–259. doi: 10.1006/viro.1996.8315. [DOI] [PubMed] [Google Scholar]
  34. Matlashewski G. J., Tuck S., Pim D., Lamb P., Schneider J., Crawford L. V. Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol. 1987 Feb;7(2):961–963. doi: 10.1128/mcb.7.2.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Moll U. M., Ostermeyer A. G., Haladay R., Winkfield B., Frazier M., Zambetti G. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol. 1996 Mar;16(3):1126–1137. doi: 10.1128/mcb.16.3.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Momand J., Zambetti G. P., Olson D. C., George D., Levine A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992 Jun 26;69(7):1237–1245. doi: 10.1016/0092-8674(92)90644-r. [DOI] [PubMed] [Google Scholar]
  37. Mosner J., Mummenbrauer T., Bauer C., Sczakiel G., Grosse F., Deppert W. Negative feedback regulation of wild-type p53 biosynthesis. EMBO J. 1995 Sep 15;14(18):4442–4449. doi: 10.1002/j.1460-2075.1995.tb00123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nabeya Y., Loganzo F., Jr, Maslak P., Lai L., de Oliveira A. R., Schwartz G. K., Blundell M. L., Altorki N. K., Kelsen D. P., Albino A. P. The mutational status of p53 protein in gastric and esophageal adenocarcinoma cell lines predicts sensitivity to chemotherapeutic agents. Int J Cancer. 1995 Feb 20;64(1):37–46. doi: 10.1002/ijc.2910640109. [DOI] [PubMed] [Google Scholar]
  39. Nita M. E., Nagawa H., Tominaga O., Tsuno N., Fujii S., Sasaki S., Fu C. G., Takenoue T., Tsuruo T., Muto T. 5-Fluorouracil induces apoptosis in human colon cancer cell lines with modulation of Bcl-2 family proteins. Br J Cancer. 1998 Oct;78(8):986–992. doi: 10.1038/bjc.1998.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nita M. E., Tominaga O., Nagawa H., Tsuruo T., Muto T. Dihydropyrimidine dehydrogenase but not thymidylate synthase expression is associated with resistance to 5-fluorouracil in colorectal cancer. Hepatogastroenterology. 1998 Nov-Dec;45(24):2117–2122. [PubMed] [Google Scholar]
  41. O'Connor P. M., Jackman J., Jondle D., Bhatia K., Magrath I., Kohn K. W. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res. 1993 Oct 15;53(20):4776–4780. [PubMed] [Google Scholar]
  42. Oltvai Z. N., Milliman C. L., Korsmeyer S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993 Aug 27;74(4):609–619. doi: 10.1016/0092-8674(93)90509-o. [DOI] [PubMed] [Google Scholar]
  43. Oren M. Relationship of p53 to the control of apoptotic cell death. Semin Cancer Biol. 1994 Jun;5(3):221–227. [PubMed] [Google Scholar]
  44. Ory K., Legros Y., Auguin C., Soussi T. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J. 1994 Aug 1;13(15):3496–3504. doi: 10.1002/j.1460-2075.1994.tb06656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Palmer D. G., Paraskeva C., Williams A. C. Modulation of p53 expression in cultured colonic adenoma cell lines by the naturally occurring lumenal factors butyrate and deoxycholate. Int J Cancer. 1997 Nov 27;73(5):702–706. doi: 10.1002/(sici)1097-0215(19971127)73:5<702::aid-ijc15>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  46. Peters G. J., van der Wilt C. L., van Triest B., Codacci-Pisanelli G., Johnston P. G., van Groeningen C. J., Pinedo H. M. Thymidylate synthase and drug resistance. Eur J Cancer. 1995 Jul-Aug;31A(7-8):1299–1305. doi: 10.1016/0959-8049(95)00172-f. [DOI] [PubMed] [Google Scholar]
  47. Pinedo H. M., Peters G. F. Fluorouracil: biochemistry and pharmacology. J Clin Oncol. 1988 Oct;6(10):1653–1664. doi: 10.1200/JCO.1988.6.10.1653. [DOI] [PubMed] [Google Scholar]
  48. Reed J. C. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994 Jan;124(1-2):1–6. doi: 10.1083/jcb.124.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990 Dec 21;63(6):1129–1136. doi: 10.1016/0092-8674(90)90409-8. [DOI] [PubMed] [Google Scholar]
  50. Selvakumaran M., Lin H. K., Miyashita T., Wang H. G., Krajewski S., Reed J. C., Hoffman B., Liebermann D. Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene. 1994 Jun;9(6):1791–1798. [PubMed] [Google Scholar]
  51. Simonian P. L., Grillot D. A., Nuñez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood. 1997 Aug 1;90(3):1208–1216. [PubMed] [Google Scholar]
  52. Spears C. P., Gustavsson B. G., Berne M., Frösing R., Bernstein L., Hayes A. A. Mechanisms of innate resistance to thymidylate synthase inhibition after 5-fluorouracil. Cancer Res. 1988 Oct 15;48(20):5894–5900. [PubMed] [Google Scholar]
  53. Stewart N., Hicks G. G., Paraskevas F., Mowat M. Evidence for a second cell cycle block at G2/M by p53. Oncogene. 1995 Jan 5;10(1):109–115. [PubMed] [Google Scholar]
  54. Strobel T., Swanson L., Korsmeyer S., Cannistra S. A. BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14094–14099. doi: 10.1073/pnas.93.24.14094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Vogelstein B., Kinzler K. W. p53 function and dysfunction. Cell. 1992 Aug 21;70(4):523–526. doi: 10.1016/0092-8674(92)90421-8. [DOI] [PubMed] [Google Scholar]
  56. Wouters B. G., Denko N. C., Giaccia A. J., Brown J. M. A p53 and apoptotic independent role for p21waf1 in tumour response to radiation therapy. Oncogene. 1999 Nov 11;18(47):6540–6545. doi: 10.1038/sj.onc.1203053. [DOI] [PubMed] [Google Scholar]
  57. Zauberman A., Flusberg D., Haupt Y., Barak Y., Oren M. A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. 1995 Jul 25;23(14):2584–2592. doi: 10.1093/nar/23.14.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zhan Q., Fan S., Bae I., Guillouf C., Liebermann D. A., O'Connor P. M., Fornace A. J., Jr Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene. 1994 Dec;9(12):3743–3751. [PubMed] [Google Scholar]
  59. Zhang Z. G., Harstrick A., Rustum Y. M. Mechanisms of resistance to fluoropyrimidines. Semin Oncol. 1992 Apr;19(2 Suppl 3):4–9. [PubMed] [Google Scholar]
  60. el-Deiry W. S., Harper J. W., O'Connor P. M., Velculescu V. E., Canman C. E., Jackman J., Pietenpol J. A., Burrell M., Hill D. E., Wang Y. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994 Mar 1;54(5):1169–1174. [PubMed] [Google Scholar]
  61. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. doi: 10.1016/0092-8674(93)90500-p. [DOI] [PubMed] [Google Scholar]