Transcription, beta-like DNA polymerases and hypermutation (original) (raw)

Abstract

This paper discusses two aspects of immunoglobulin (Ig) gene hypermutation. In the first approach, a transcription termination signal is introduced in an Ig light chain transgene acting as a mutation substrate, and transgenic lines are generated with control and mutant transgenes integrated in tandem. Analysis of transcription levels and mutation frequencies between mutant and control transgenes clearly dissociates transcription elongation and mutation, and therefore argues against models whereby specific pausing of the RNA polymerase during V gene transcription would trigger an error-prone repair process. The second part reports the identification of two novel beta-like DNA polymerases named Pol lambda and Pol mu, one of which (Pol mu) represents a good candidate for the Ig mutase due to its higher lymphoid expression and its similarity with the lymphoid enzyme terminal deoxynucleotidyl transferase. Peculiar features of the expression of this gene, including an unusual splicing variability and a splicing inhibition in response to DNA-damaging agents, are discussed.

Full Text

The Full Text of this article is available as a PDF (141.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aoufouchi S., Flatter E., Dahan A., Faili A., Bertocci B., Storck S., Delbos F., Cocea L., Gupta N., Weill J. C. Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res. 2000 Sep 15;28(18):3684–3693. doi: 10.1093/nar/28.18.3684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashfield R., Patel A. J., Bossone S. A., Brown H., Campbell R. D., Marcu K. B., Proudfoot N. J. MAZ-dependent termination between closely spaced human complement genes. EMBO J. 1994 Dec 1;13(23):5656–5667. doi: 10.1002/j.1460-2075.1994.tb06904.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertocci B., Quint L., Delbos F., Garcia C., Reynaud C. A., Weill J. C. Probing immunoglobulin gene hypermutation with microsatellites suggests a nonreplicative short patch DNA synthesis process. Immunity. 1998 Aug;9(2):257–265. doi: 10.1016/s1074-7613(00)80608-1. [DOI] [PubMed] [Google Scholar]
  5. Betz A. G., Milstein C., González-Fernández A., Pannell R., Larson T., Neuberger M. S. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994 Apr 22;77(2):239–248. doi: 10.1016/0092-8674(94)90316-6. [DOI] [PubMed] [Google Scholar]
  6. Bork P., Hofmann K., Bucher P., Neuwald A. F., Altschul S. F., Koonin E. V. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 1997 Jan;11(1):68–76. [PubMed] [Google Scholar]
  7. Brenner S., Milstein C. Origin of antibody variation. Nature. 1966 Jul 16;211(5046):242–243. doi: 10.1038/211242a0. [DOI] [PubMed] [Google Scholar]
  8. Denépoux S., Razanajaona D., Blanchard D., Meffre G., Capra J. D., Banchereau J., Lebecque S. Induction of somatic mutation in a human B cell line in vitro. Immunity. 1997 Jan;6(1):35–46. doi: 10.1016/s1074-7613(00)80240-x. [DOI] [PubMed] [Google Scholar]
  9. Diaz M., Velez J., Singh M., Cerny J., Flajnik M. F. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol. 1999 May;11(5):825–833. doi: 10.1093/intimm/11.5.825. [DOI] [PubMed] [Google Scholar]
  10. Doherty A. J., Serpell L. C., Ponting C. P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 1996 Jul 1;24(13):2488–2497. doi: 10.1093/nar/24.13.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Domínguez O., Ruiz J. F., Laín de Lera T., García-Díaz M., González M. A., Kirchhoff T., Martínez-A C., Bernad A., Blanco L. DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 2000 Apr 3;19(7):1731–1742. doi: 10.1093/emboj/19.7.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Esposito G., Texido G., Betz U. A., Gu H., Müller W., Klein U., Rajewsky K. Mice reconstituted with DNA polymerase beta-deficient fetal liver cells are able to mount a T cell-dependent immune response and mutate their Ig genes normally. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1166–1171. doi: 10.1073/pnas.97.3.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fukita Y., Jacobs H., Rajewsky K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity. 1998 Jul;9(1):105–114. doi: 10.1016/s1074-7613(00)80592-0. [DOI] [PubMed] [Google Scholar]
  14. García-Díaz M., Domínguez O., López-Fernández L. A., de Lera L. T., Saníger M. L., Ruiz J. F., Párraga M., García-Ortiz M. J., Kirchhoff T., del Mazo J. DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis. J Mol Biol. 2000 Aug 25;301(4):851–867. doi: 10.1006/jmbi.2000.4005. [DOI] [PubMed] [Google Scholar]
  15. Goodman M. F., Tippin B. Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev. 2000 Apr;10(2):162–168. doi: 10.1016/s0959-437x(00)00057-5. [DOI] [PubMed] [Google Scholar]
  16. Goossens T., Klein U., Küppers R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2463–2468. doi: 10.1073/pnas.95.5.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goyenechea B., Klix N., Yélamos J., Williams G. T., Riddell A., Neuberger M. S., Milstein C. Cells strongly expressing Ig(kappa) transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. EMBO J. 1997 Jul 1;16(13):3987–3994. doi: 10.1093/emboj/16.13.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holm L., Sander C. DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci. 1995 Sep;20(9):345–347. doi: 10.1016/s0968-0004(00)89071-4. [DOI] [PubMed] [Google Scholar]
  19. Jacobs H., Fukita Y., van der Horst G. T., de Boer J., Weeda G., Essers J., de Wind N., Engelward B. P., Samson L., Verbeek S. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice. J Exp Med. 1998 Jun 1;187(11):1735–1743. doi: 10.1084/jem.187.11.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim N., Kage K., Matsuda F., Lefranc M. P., Storb U. B lymphocytes of xeroderma pigmentosum or Cockayne syndrome patients with inherited defects in nucleotide excision repair are fully capable of somatic hypermutation of immunoglobulin genes. J Exp Med. 1997 Aug 4;186(3):413–419. doi: 10.1084/jem.186.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kunkel T. A., Soni A. Mutagenesis by transient misalignment. J Biol Chem. 1988 Oct 15;263(29):14784–14789. [PubMed] [Google Scholar]
  22. Lebecque S. G., Gearhart P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene. J Exp Med. 1990 Dec 1;172(6):1717–1727. doi: 10.1084/jem.172.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levitt N., Briggs D., Gil A., Proudfoot N. J. Definition of an efficient synthetic poly(A) site. Genes Dev. 1989 Jul;3(7):1019–1025. doi: 10.1101/gad.3.7.1019. [DOI] [PubMed] [Google Scholar]
  24. Levy Y., Gupta N., Le Deist F., Garcia C., Fischer A., Weill J. C., Reynaud C. A. Defect in IgV gene somatic hypermutation in common variable immuno-deficiency syndrome. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13135–13140. doi: 10.1073/pnas.95.22.13135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Li S., Wilkinson M. F. Nonsense surveillance in lymphocytes? Immunity. 1998 Feb;8(2):135–141. doi: 10.1016/s1074-7613(00)80466-5. [DOI] [PubMed] [Google Scholar]
  26. Matsuda T., Bebenek K., Masutani C., Hanaoka F., Kunkel T. A. Low fidelity DNA synthesis by human DNA polymerase-eta. Nature. 2000 Apr 27;404(6781):1011–1013. doi: 10.1038/35010014. [DOI] [PubMed] [Google Scholar]
  27. Muramatsu M., Kinoshita K., Fagarasan S., Yamada S., Shinkai Y., Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000 Sep 1;102(5):553–563. doi: 10.1016/s0092-8674(00)00078-7. [DOI] [PubMed] [Google Scholar]
  28. Peters A., Storb U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity. 1996 Jan;4(1):57–65. doi: 10.1016/s1074-7613(00)80298-8. [DOI] [PubMed] [Google Scholar]
  29. Proudfoot N. Connecting transcription to messenger RNA processing. Trends Biochem Sci. 2000 Jun;25(6):290–293. doi: 10.1016/s0968-0004(00)01591-7. [DOI] [PubMed] [Google Scholar]
  30. Radman M. Enzymes of evolutionary change. Nature. 1999 Oct 28;401(6756):866-7, 869. doi: 10.1038/44738. [DOI] [PubMed] [Google Scholar]
  31. Sale J. E., Neuberger M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity. 1998 Dec;9(6):859–869. doi: 10.1016/s1074-7613(00)80651-2. [DOI] [PubMed] [Google Scholar]
  32. Shen H. M., Cheo D. L., Friedberg E., Storb U. The inactivation of the XP-C gene does not affect somatic hypermutation or class switch recombination of immunoglobulin genes. Mol Immunol. 1997 May;34(7):527–533. doi: 10.1016/s0161-5890(97)00064-3. [DOI] [PubMed] [Google Scholar]
  33. Storb U., Klotz E. L., Hackett J., Jr, Kage K., Bozek G., Martin T. E. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J Exp Med. 1998 Aug 17;188(4):689–698. doi: 10.1084/jem.188.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tissier A., McDonald J. P., Frank E. G., Woodgate R. poliota, a remarkably error-prone human DNA polymerase. Genes Dev. 2000 Jul 1;14(13):1642–1650. [PMC free article] [PubMed] [Google Scholar]
  35. Wagner S. D., Elvin J. G., Norris P., McGregor J. M., Neuberger M. S. Somatic hypermutation of Ig genes in patients with xeroderma pigmentosum (XP-D). Int Immunol. 1996 May;8(5):701–705. doi: 10.1093/intimm/8.5.701. [DOI] [PubMed] [Google Scholar]
  36. Wilson P. C., de Bouteiller O., Liu Y. J., Potter K., Banchereau J., Capra J. D., Pascual V. Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J Exp Med. 1998 Jan 5;187(1):59–70. doi: 10.1084/jem.187.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yonaha M., Proudfoot N. J. Transcriptional termination and coupled polyadenylation in vitro. EMBO J. 2000 Jul 17;19(14):3770–3777. doi: 10.1093/emboj/19.14.3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yélamos J., Klix N., Goyenechea B., Lozano F., Chui Y. L., González Fernández A., Pannell R., Neuberger M. S., Milstein C. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature. 1995 Jul 20;376(6537):225–229. doi: 10.1038/376225a0. [DOI] [PubMed] [Google Scholar]