Polarization-modulated second harmonic generation in collagen (original) (raw)

Abstract

Collagen possesses a strong second-order nonlinear susceptibility, a nonlinear optical property characterized by second harmonic generation in the presence of intense laser beams. We present a new technique involving polarization modulation of an ultra-short pulse laser beam that can simultaneously determine collagen fiber orientation and a parameter related to the second-order nonlinear susceptibility. We demonstrate the ability to discriminate among different patterns of fibrillar orientation, as exemplified by tendon, fascia, cornea, and successive lamellar rings in an intervertebral disc. Fiber orientation can be measured as a function of depth with an axial resolution of approximately 10 microm. The parameter related to the second-order nonlinear susceptibility is sensitive to fiber disorganization, oblique incidence of the beam on the sample, and birefringence of the tissue. This parameter represents an aggregate measure of tissue optical properties that could potentially be used for optical imaging in vivo.

Full Text

The Full Text of this article is available as a PDF (764.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck K., Brodsky B. Supercoiled protein motifs: the collagen triple-helix and the alpha-helical coiled coil. J Struct Biol. 1998;122(1-2):17–29. doi: 10.1006/jsbi.1998.3965. [DOI] [PubMed] [Google Scholar]
  2. Campagnola P. J., Clark H. A., Mohler W. A., Lewis A., Loew L. M. Second-harmonic imaging microscopy of living cells. J Biomed Opt. 2001 Jul;6(3):277–286. doi: 10.1117/1.1383294. [DOI] [PubMed] [Google Scholar]
  3. Eyden B., Tzaphlidou M. Structural variations of collagen in normal and pathological tissues: role of electron microscopy. Micron. 2001 Apr;32(3):287–300. doi: 10.1016/s0968-4328(00)00045-7. [DOI] [PubMed] [Google Scholar]
  4. Freund I., Deutsch M., Sprecher A. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J. 1986 Oct;50(4):693–712. doi: 10.1016/S0006-3495(86)83510-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gelman R. A., Williams B. R., Piez K. A. Collagen fibril formation. Evidence for a multistep process. J Biol Chem. 1979 Jan 10;254(1):180–186. [PubMed] [Google Scholar]
  6. Huse N., Schönle A., Hell S. W. Z-polarized confocal microscopy. J Biomed Opt. 2001 Jul;6(3):273–276. doi: 10.1117/1.1382610. [DOI] [PubMed] [Google Scholar]
  7. James V. J., Delbridge L., McLennan S. V., Yue D. K. Use of X-ray diffraction in study of human diabetic and aging collagen. Diabetes. 1991 Mar;40(3):391–394. doi: 10.2337/diab.40.3.391. [DOI] [PubMed] [Google Scholar]
  8. Kadler K. E., Holmes D. F., Trotter J. A., Chapman J. A. Collagen fibril formation. Biochem J. 1996 May 15;316(Pt 1):1–11. doi: 10.1042/bj3160001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kim B. M., Eichler J., Reiser K. M., Rubenchik A. M., Da Silva L. B. Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity. Lasers Surg Med. 2000;27(4):329–335. doi: 10.1002/1096-9101(2000)27:4<329::aid-lsm5>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  10. Knott L., Bailey A. J. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998 Mar;22(3):181–187. doi: 10.1016/s8756-3282(97)00279-2. [DOI] [PubMed] [Google Scholar]
  11. Prockop D. J., Fertala A. The collagen fibril: the almost crystalline structure. J Struct Biol. 1998;122(1-2):111–118. doi: 10.1006/jsbi.1998.3976. [DOI] [PubMed] [Google Scholar]
  12. Reiser K. M. Nonenzymatic glycation of collagen in aging and diabetes. Proc Soc Exp Biol Med. 1991 Jan;196(1):17–29. doi: 10.3181/00379727-196-43158c. [DOI] [PubMed] [Google Scholar]
  13. Reiser K., McCormick R. J., Rucker R. B. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J. 1992 Apr;6(7):2439–2449. doi: 10.1096/fasebj.6.7.1348714. [DOI] [PubMed] [Google Scholar]
  14. Roth S., Freund I. Optical second-harmonic scattering in rat-tail tendon. Biopolymers. 1981 Jun;20(6):1271–1290. doi: 10.1002/bip.1981.360200613. [DOI] [PubMed] [Google Scholar]
  15. Tadrous P. J. Methods for imaging the structure and function of living tissues and cells: 1. Optical coherence tomography. J Pathol. 2000 Jun;191(2):115–119. doi: 10.1002/(SICI)1096-9896(200006)191:2<115::AID-PATH589>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  16. Theodossiou T., Georgiou E., Hovhannisyan V., Yova D. Visual observation of infrared laser speckle patterns at half their fundamental wavelength. Lasers Med Sci. 2001;16(1):34–39. doi: 10.1007/pl00011334. [DOI] [PubMed] [Google Scholar]
  17. Williams B. R., Gelman R. A., Poppke D. C., Piez K. A. Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem. 1978 Sep 25;253(18):6578–6585. [PubMed] [Google Scholar]