The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments (original) (raw)

Abstract

The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and 430 nm, and ultraviolet-sensitive (UVS), with a lambda(max)<380 nm. Phylogenetic evidence indicates that the ancestral pigment was UVS and that VS pigments have evolved separately from UVS pigments in the different vertebrate lineages. In this study, we have examined the mechanism of evolution of VS pigments in the mammalian lineage leading to present day ungulates (cow and pig). Amino acid sequence comparisons of the UVS pigments of teleost fish, amphibia, reptiles and rodents show that site 86 is invariably occupied by Phe but is replaced in bovine and porcine VS pigments by Tyr. Using site-directed mutagenesis of goldfish UVS opsin, we have shown that a Phe-86-->Tyr substitution is sufficient by itself to shift the lambda(max) of the goldfish pigment from a wild-type value of 360 nm to around 420 nm, and the reverse substitution of Tyr-86-Phe into bovine VS opsin produces a similar shift in the opposite direction. The substitution of this single amino acid is sufficient to account therefore for the evolution of bovine and porcine VS pigments. The replacement of Phe with polar Tyr at site 86 is consistent with the stabilization of Schiff-base protonation in VS pigments and the absence of protonation in UVS pigments.

Full Text

The Full Text of this article is available as a PDF (242.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu K. R., Dukkipati A., Birge R. R., Knox B. E. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion. Biochemistry. 2001 Nov 20;40(46):13760–13766. doi: 10.1021/bi015584b. [DOI] [PubMed] [Google Scholar]
  2. Bowmaker J. K., Astell S., Hunt D. M., Mollon J. D. Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol. 1991 Mar;156:1–19. doi: 10.1242/jeb.156.1.1. [DOI] [PubMed] [Google Scholar]
  3. Bowmaker J. K., Heath L. A., Wilkie S. E., Hunt D. M. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 1997 Aug;37(16):2183–2194. doi: 10.1016/s0042-6989(97)00026-6. [DOI] [PubMed] [Google Scholar]
  4. Bowmaker J. K., Thorpe A., Douglas R. H. Ultraviolet-sensitive cones in the goldfish. Vision Res. 1991;31(3):349–352. doi: 10.1016/0042-6989(91)90087-l. [DOI] [PubMed] [Google Scholar]
  5. Chiu M. I., Zack D. J., Wang Y., Nathans J. Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments. Genomics. 1994 May 15;21(2):440–443. doi: 10.1006/geno.1994.1292. [DOI] [PubMed] [Google Scholar]
  6. Das D., Wilkie S. E., Hunt D. M., Bowmaker J. K. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vision Res. 1999 Aug;39(17):2801–2815. doi: 10.1016/s0042-6989(99)00023-1. [DOI] [PubMed] [Google Scholar]
  7. Dukkipati A., Vought B. W., Singh D., Birge R. R., Knox B. E. Serine 85 in transmembrane helix 2 of short-wavelength visual pigments interacts with the retinylidene Schiff base counterion. Biochemistry. 2001 Dec 18;40(50):15098–15108. doi: 10.1021/bi011354l. [DOI] [PubMed] [Google Scholar]
  8. Fasick J. I., Lee N., Oprian D. D. Spectral tuning in the human blue cone pigment. Biochemistry. 1999 Sep 7;38(36):11593–11596. doi: 10.1021/bi991600h. [DOI] [PubMed] [Google Scholar]
  9. Findlay J. B., Pappin D. J. The opsin family of proteins. Biochem J. 1986 Sep 15;238(3):625–642. doi: 10.1042/bj2380625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franke R. R., Sakmar T. P., Oprian D. D., Khorana H. G. A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. J Biol Chem. 1988 Feb 15;263(5):2119–2122. [PubMed] [Google Scholar]
  11. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  12. Hunt D. M., Cowing J. A., Patel R., Appukuttan B., Bowmaker J. K., Mollon J. D. Sequence and evolution of the blue cone pigment gene in Old and New World primates. Genomics. 1995 Jun 10;27(3):535–538. doi: 10.1006/geno.1995.1088. [DOI] [PubMed] [Google Scholar]
  13. Hunt D. M., Wilkie S. E., Bowmaker J. K., Poopalasundaram S. Vision in the ultraviolet. Cell Mol Life Sci. 2001 Oct;58(11):1583–1598. doi: 10.1007/PL00000798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobs G. H., Deegan J. F., 2nd, Neitz J. Photopigment basis for dichromatic color vision in cows, goats, and sheep. Vis Neurosci. 1998 May-Jun;15(3):581–584. doi: 10.1017/s0952523898153154. [DOI] [PubMed] [Google Scholar]
  15. Johnson R. L., Grant K. B., Zankel T. C., Boehm M. F., Merbs S. L., Nathans J., Nakanishi K. Cloning and expression of goldfish opsin sequences. Biochemistry. 1993 Jan 12;32(1):208–214. doi: 10.1021/bi00052a027. [DOI] [PubMed] [Google Scholar]
  16. Kawamura S., Yokoyama S. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Res. 1998 Jan;38(1):37–44. doi: 10.1016/s0042-6989(97)00160-0. [DOI] [PubMed] [Google Scholar]
  17. Kawamura S., Yokoyama S. Phylogenetic relationships among short wavelength-sensitive opsins of American chameleon (Anolis carolinensis) and other vertebrates. Vision Res. 1996 Sep;36(18):2797–2804. doi: 10.1016/0042-6989(96)00034-x. [DOI] [PubMed] [Google Scholar]
  18. Liebman P. A., Entine G. Sensitive low-light-level microspectrophotometer: detection of photosensitive pigments of retinal cones. J Opt Soc Am. 1964 Dec;54(12):1451–1459. doi: 10.1364/josa.54.001451. [DOI] [PubMed] [Google Scholar]
  19. Lin S. W., Kochendoerfer G. G., Carroll K. S., Wang D., Mathies R. A., Sakmar T. P. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants. J Biol Chem. 1998 Sep 18;273(38):24583–24591. doi: 10.1074/jbc.273.38.24583. [DOI] [PubMed] [Google Scholar]
  20. Ma J. X., Kono M., Xu L., Das J., Ryan J. C., Hazard E. S., 3rd, Oprian D. D., Crouch R. K. Salamander UV cone pigment: sequence, expression, and spectral properties. Vis Neurosci. 2001 May-Jun;18(3):393–399. doi: 10.1017/s0952523801183057. [DOI] [PubMed] [Google Scholar]
  21. Molday R. S., MacKenzie D. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry. 1983 Feb 1;22(3):653–660. doi: 10.1021/bi00272a020. [DOI] [PubMed] [Google Scholar]
  22. Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. doi: 10.1126/science.2937147. [DOI] [PubMed] [Google Scholar]
  23. Oprian D. D., Molday R. S., Kaufman R. J., Khorana H. G. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8874–8878. doi: 10.1073/pnas.84.24.8874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  25. Shi Y., Radlwimmer F. B., Yokoyama S. Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11731–11736. doi: 10.1073/pnas.201257398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Starace D. M., Knox B. E. Cloning and expression of a Xenopus short wavelength cone pigment. Exp Eye Res. 1998 Aug;67(2):209–220. doi: 10.1006/exer.1998.0507. [DOI] [PubMed] [Google Scholar]
  27. Vihtelic T. S., Doro C. J., Hyde D. R. Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins. Vis Neurosci. 1999 May-Jun;16(3):571–585. doi: 10.1017/s0952523899163168. [DOI] [PubMed] [Google Scholar]
  28. Vought B. W., Dukkipatti A., Max M., Knox B. E., Birge R. R. Photochemistry of the primary event in short-wavelength visual opsins at low temperature. Biochemistry. 1999 Aug 31;38(35):11287–11297. doi: 10.1021/bi990968b. [DOI] [PubMed] [Google Scholar]
  29. Wilkie S. E., Robinson P. R., Cronin T. W., Poopalasundaram S., Bowmaker J. K., Hunt D. M. Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry. 2000 Jul 11;39(27):7895–7901. doi: 10.1021/bi992776m. [DOI] [PubMed] [Google Scholar]
  30. Wilkie S. E., Vissers P. M., Das D., Degrip W. J., Bowmaker J. K., Hunt D. M. The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochem J. 1998 Feb 15;330(Pt 1):541–547. doi: 10.1042/bj3300541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yokoyama S., Radlwimmer F. B., Blow N. S. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7366–7371. doi: 10.1073/pnas.97.13.7366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yokoyama S., Radlwimmer F. B., Kawamura S. Regeneration of ultraviolet pigments of vertebrates. FEBS Lett. 1998 Feb 20;423(2):155–158. doi: 10.1016/s0014-5793(98)00086-6. [DOI] [PubMed] [Google Scholar]
  33. Yokoyama S., Shi Y. Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett. 2000 Dec 8;486(2):167–172. doi: 10.1016/s0014-5793(00)02269-9. [DOI] [PubMed] [Google Scholar]
  34. Zhao X., Haeseleer F., Fariss R. N., Huang J., Baehr W., Milam A. H., Palczewski K. Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Vis Neurosci. 1997 Mar-Apr;14(2):225–232. doi: 10.1017/s0952523800011366. [DOI] [PubMed] [Google Scholar]