Correlation of Rapid Cell Death with Metabolic Changes in Fungus-Infected, Cultured Parsley Cells (original) (raw)

Abstract

To study in detail the hypersensitive reaction, one of the major defense responses of plants against microbial infection, we used a model system of reduced complexity with cultured parsley (Petroselinum crispum) cells infected with the phytopathogenic fungus Phytophthora infestans. Experimental conditions were established to maintain maximal viability of the cultured cells during co-cultivation with fungal germlings, and a large proportion of the infected parsley cells responded to fungal infection with rapid cell death, thereby exhibiting major features of the hypersensitive reaction in whole-plant-pathogen interactions. Rapid cell death clearly correlated with termination of further growth and development of the fungal pathogen. Thus, the system fulfilled important prerequisites for investigating cell-death-related metabolic changes in individual infected cells. Using cytochemical methods, we monitored the increase of mitochondrial activity in single infected cells and the intracellular accumulation of reactive oxygen species prior to the occurrence of rapid cell death. We obtained strong correlative evidence for the involvement of these intracellularly accumulating reactive oxygen species in membrane damage and in the resulting abrupt collapse of the cell.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arends M. J., Wyllie A. H. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991;32:223–254. doi: 10.1016/b978-0-12-364932-4.50010-1. [DOI] [PubMed] [Google Scholar]
  3. Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983 Apr;130(4):1910–1917. [PubMed] [Google Scholar]
  4. Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
  5. Brisson L. F., Tenhaken R., Lamb C. Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell. 1994 Dec;6(12):1703–1712. doi: 10.1105/tpc.6.12.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burow S., Valet G. Flow-cytometric characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2,7-dichlorofluorescein (DCF). Eur J Cell Biol. 1987 Feb;43(1):128–133. [PubMed] [Google Scholar]
  7. Cathcart R., Schwiers E., Ames B. N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem. 1983 Oct 1;134(1):111–116. doi: 10.1016/0003-2697(83)90270-1. [DOI] [PubMed] [Google Scholar]
  8. Chen L. B. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol. 1988;4:155–181. doi: 10.1146/annurev.cb.04.110188.001103. [DOI] [PubMed] [Google Scholar]
  9. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  10. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  11. Ellis R. E., Yuan J. Y., Horvitz H. R. Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991;7:663–698. doi: 10.1146/annurev.cb.07.110191.003311. [DOI] [PubMed] [Google Scholar]
  12. Emaus R. K., Grunwald R., Lemasters J. J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986 Jul 23;850(3):436–448. doi: 10.1016/0005-2728(86)90112-x. [DOI] [PubMed] [Google Scholar]
  13. Gross P., Julius C., Schmelzer E., Hahlbrock K. Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defence gene activation in infected, cultured parsley cells. EMBO J. 1993 May;12(5):1735–1744. doi: 10.1002/j.1460-2075.1993.tb05821.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heller W., Egin-Bühler B., Gardiner S. E., Knobloch K. H., Matern U., Ebel J., Hahlbrock K. Enzymes of General Phenylpropanoid Metabolism and of Flavonoid Glycoside Biosynthesis in Parsley: Differential Inducibility by Light during the Growth of Cell Suspension Cultures. Plant Physiol. 1979 Sep;64(3):371–373. doi: 10.1104/pp.64.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  16. Hoffmann E., Schonherr K., Johann P., Hampp R., von Keller A., Voeste D., Barth S., Schnabl H., Baumann T., Eisenbeiss M. Electrofusion of plant cell protoplasts under microgravity--a D-2 spacelab experiment. Microgravity Sci Technol. 1995 Nov;8(3):188–195. [PubMed] [Google Scholar]
  17. Jakobek J. L., Lindgren P. B. Generalized Induction of Defense Responses in Bean Is Not Correlated with the Induction of the Hypersensitive Reaction. Plant Cell. 1993 Jan;5(1):49–56. doi: 10.1105/tpc.5.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson L. V., Walsh M. L., Bockus B. J., Chen L. B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol. 1981 Mar;88(3):526–535. doi: 10.1083/jcb.88.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keen N. T. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet. 1990;24:447–463. doi: 10.1146/annurev.ge.24.120190.002311. [DOI] [PubMed] [Google Scholar]
  20. Kulkarni A. P., Mitra A., Chaudhuri J., Byczkowski J. Z., Richards I. Hydrogen peroxide: a potent activator of dioxygenase activity of soybean lipoxygenase. Biochem Biophys Res Commun. 1990 Jan 15;166(1):417–423. doi: 10.1016/0006-291x(90)91961-q. [DOI] [PubMed] [Google Scholar]
  21. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  22. Liu Z., Bushnell W. R., Brambl R. Pontentiometric cyanine dyes are sensitive probes for mitochondria in intact plant cells : kinetin enhances mitochondrial fluorescence. Plant Physiol. 1987 Aug;84(4):1385–1390. doi: 10.1104/pp.84.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moore T. S., Miller C. O. Effects of cytokinins on the respiration of soybean callus tissue. Plant Physiol. 1972 Nov;50(5):594–598. doi: 10.1104/pp.50.5.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nürnberger T., Nennstiel D., Jabs T., Sacks W. R., Hahlbrock K., Scheel D. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell. 1994 Aug 12;78(3):449–460. doi: 10.1016/0092-8674(94)90423-5. [DOI] [PubMed] [Google Scholar]
  26. Peterman T. K., Siedow J. N. Structural Features Required for Inhibition of Soybean Lipoxygenase-2 by Propyl Gallate : Evidence that Lipoxygenase Activity Is Distinct from the Alternative Pathway. Plant Physiol. 1983 Jan;71(1):55–58. doi: 10.1104/pp.71.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Richter C., Azzi A., Weser U., Wendel A. Hepatic microsomal dealkylations. Inhibition by a tyrosine-copper (II) complex provided with superoxide dismutase activity. J Biol Chem. 1977 Jul 25;252(14):5061–5066. [PubMed] [Google Scholar]
  28. Sanchez-Casas P., Klessig D. F. A Salicylic Acid-Binding Activity and a Salicylic Acid-Inhibitable Catalase Activity Are Present in a Variety of Plant Species. Plant Physiol. 1994 Dec;106(4):1675–1679. doi: 10.1104/pp.106.4.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schmelzer E., Kruger-Lebus S., Hahlbrock K. Temporal and Spatial Patterns of Gene Expression around Sites of Attempted Fungal Infection in Parsley Leaves. Plant Cell. 1989 Oct;1(10):993–1001. doi: 10.1105/tpc.1.10.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yuan J. Y., Horvitz H. R. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol. 1990 Mar;138(1):33–41. doi: 10.1016/0012-1606(90)90174-h. [DOI] [PubMed] [Google Scholar]