Stochastic search variable selection for identifying multiple quantitative trait loci (original) (raw)

Abstract

In this article, we utilize stochastic search variable selection methodology to develop a Bayesian method for identifying multiple quantitative trait loci (QTL) for complex traits in experimental designs. The proposed procedure entails embedding multiple regression in a hierarchical normal mixture model, where latent indicators for all markers are used to identify the multiple markers. The markers with significant effects can be identified as those with higher posterior probability included in the model. A simple and easy-to-use Gibbs sampler is employed to generate samples from the joint posterior distribution of all unknowns including the latent indicators, genetic effects for all markers, and other model parameters. The proposed method was evaluated using simulated data and illustrated using a real data set. The results demonstrate that the proposed method works well under typical situations of most QTL studies in terms of number of markers and marker density.

Full Text

The Full Text of this article is available as a PDF (416.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball R. D. Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion. Genetics. 2001 Nov;159(3):1351–1364. doi: 10.1093/genetics/159.3.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  3. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Meuwissen T. H., Hayes B. J., Goddard M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001 Apr;157(4):1819–1829. doi: 10.1093/genetics/157.4.1819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Piepho H. P., Gauch H. G., Jr Marker pair selection for mapping quantitative trait loci. Genetics. 2001 Jan;157(1):433–444. doi: 10.1093/genetics/157.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sen S., Churchill G. A. A statistical framework for quantitative trait mapping. Genetics. 2001 Sep;159(1):371–387. doi: 10.1093/genetics/159.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics. 1998 Mar;148(3):1373–1388. doi: 10.1093/genetics/148.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sillanpä Mikko J., Corander Jukka. Model choice in gene mapping: what and why. Trends Genet. 2002 Jun;18(6):301–307. doi: 10.1016/S0168-9525(02)02688-4. [DOI] [PubMed] [Google Scholar]
  11. Xu S., Yi N. Mixed model analysis of quantitative trait loci. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14542–14547. doi: 10.1073/pnas.250235197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Xu Shizhong. Estimating polygenic effects using markers of the entire genome. Genetics. 2003 Feb;163(2):789–801. doi: 10.1093/genetics/163.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yi N., Xu S. Bayesian mapping of quantitative trait loci for complex binary traits. Genetics. 2000 Jul;155(3):1391–1403. doi: 10.1093/genetics/155.3.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yi N., Xu S. Bayesian mapping of quantitative trait loci under complicated mating designs. Genetics. 2001 Apr;157(4):1759–1771. doi: 10.1093/genetics/157.4.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zeng Z. B., Kao C. H., Basten C. J. Estimating the genetic architecture of quantitative traits. Genet Res. 1999 Dec;74(3):279–289. doi: 10.1017/s0016672399004255. [DOI] [PubMed] [Google Scholar]
  16. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]