Genesis of embryonic stem cells (original) (raw)

Abstract

Embryonic stem (ES) cells are permanent pluripotent stem cell lines established from pre-implantation mouse embryos. There is currently great interest in the potential therapeutic applications of analogous cells derived from human embryos. The isolation of ES cells is commonly presented as a straightforward transfer of cells in the early embryo into culture. In reality, however, continuous expansion of pluripotent cells does not occur in vivo, and in vitro is the exception rather than the norm. Both genetic and epigenetic factors influence the ability to derive ES cells. We have tracked the expression of a key marker and determinant of pluripotency, the transcription factor Oct-4, in primary cultures of mouse epiblasts and used this to assay the effect of experimental manipulations on the maintenance of a pluripotent cell compartment. We find that expression of Oct-4 is often lost prior to overt cytodifferentiation of the epiblast. The rate and extent of Oct-4 extinction varies with genetic background. We report that treatment with the MAP kinase/ERK kinase inhibitor PD98059, which suppresses activation of the mitogen-activated protein kinases Erk1 and Erk2, results in increased persistence of Oct-4-expressing cells. Oct-4 expression is also relatively sustained in cultures of diapause embryos and of isolated inner cell masses. Combination of all three conditions allowed the derivation of germline-competent ES cells from the normally refractory CBA mouse strain. These findings suggest that the genesis of an ES cell is a relatively complex process requiring epigenetic modulation of key gene expression over a brief time-window. Procedures that extend this time-window and/or directly regulate the critical genes should increase the efficiency of ES cell derivation.

Full Text

The Full Text of this article is available as a PDF (205.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley A., Hasty P., Davis A., Ramirez-Solis R. Modifying the mouse: design and desire. Biotechnology (N Y) 1992 May;10(5):534–539. doi: 10.1038/nbt0592-534. [DOI] [PubMed] [Google Scholar]
  2. Brook F. A., Gardner R. L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5709–5712. doi: 10.1073/pnas.94.11.5709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buehr M., Nichols J., Stenhouse F., Mountford P., Greenhalgh C. J., Kantachuvesiri S., Brooker G., Mullins J., Smith A. G. Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biol Reprod. 2003 Jan;68(1):222–229. doi: 10.1095/biolreprod.102.006197. [DOI] [PubMed] [Google Scholar]
  4. Burdon T., Stracey C., Chambers I., Nichols J., Smith A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol. 1999 Jun 1;210(1):30–43. doi: 10.1006/dbio.1999.9265. [DOI] [PubMed] [Google Scholar]
  5. Burdon Tom, Smith Austin, Savatier Pierre. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 2002 Sep;12(9):432–438. doi: 10.1016/s0962-8924(02)02352-8. [DOI] [PubMed] [Google Scholar]
  6. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans M. J., Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981 Jul 9;292(5819):154–156. doi: 10.1038/292154a0. [DOI] [PubMed] [Google Scholar]
  8. Gardner R. L., Brook F. A. Reflections on the biology of embryonic stem (ES) cells. Int J Dev Biol. 1997 Apr;41(2):235–243. [PubMed] [Google Scholar]
  9. Kawase E., Suemori H., Takahashi N., Okazaki K., Hashimoto K., Nakatsuji N. Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int J Dev Biol. 1994 Jun;38(2):385–390. [PubMed] [Google Scholar]
  10. Martin G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634–7638. doi: 10.1073/pnas.78.12.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McWhir J., Schnieke A. E., Ansell R., Wallace H., Colman A., Scott A. R., Kind A. J. Selective ablation of differentiated cells permits isolation of embryonic stem cell lines from murine embryos with a non-permissive genetic background. Nat Genet. 1996 Oct;14(2):223–226. doi: 10.1038/ng1096-223. [DOI] [PubMed] [Google Scholar]
  12. Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Schöler H., Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998 Oct 30;95(3):379–391. doi: 10.1016/s0092-8674(00)81769-9. [DOI] [PubMed] [Google Scholar]
  13. Niwa H., Miyazaki J., Smith A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000 Apr;24(4):372–376. doi: 10.1038/74199. [DOI] [PubMed] [Google Scholar]
  14. Prelle K., Vassiliev I. M., Vassilieva S. G., Wolf E., Wobus A. M. Establishment of pluripotent cell lines from vertebrate species--present status and future prospects. Cells Tissues Organs. 1999;165(3-4):220–236. doi: 10.1159/000016683. [DOI] [PubMed] [Google Scholar]
  15. Reubinoff B. E., Pera M. F., Fong C. Y., Trounson A., Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000 Apr;18(4):399–404. doi: 10.1038/74447. [DOI] [PubMed] [Google Scholar]
  16. Rosner M. H., Vigano M. A., Ozato K., Timmons P. M., Poirier F., Rigby P. W., Staudt L. M. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature. 1990 Jun 21;345(6277):686–692. doi: 10.1038/345686a0. [DOI] [PubMed] [Google Scholar]
  17. Schöler H. R., Dressler G. R., Balling R., Rohdewohld H., Gruss P. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J. 1990 Jul;9(7):2185–2195. doi: 10.1002/j.1460-2075.1990.tb07388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schöler H. R., Ruppert S., Suzuki N., Chowdhury K., Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990 Mar 29;344(6265):435–439. doi: 10.1038/344435a0. [DOI] [PubMed] [Google Scholar]
  19. Solter D., Gearhart J. Putting stem cells to work. Science. 1999 Mar 5;283(5407):1468–1470. doi: 10.1126/science.283.5407.1468. [DOI] [PubMed] [Google Scholar]
  20. Solter D., Knowles B. B. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5099–5102. doi: 10.1073/pnas.72.12.5099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marshall V. S., Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145–1147. doi: 10.1126/science.282.5391.1145. [DOI] [PubMed] [Google Scholar]
  22. Thomson J. A., Kalishman J., Golos T. G., Durning M., Harris C. P., Becker R. A., Hearn J. P. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7844–7848. doi: 10.1073/pnas.92.17.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]