Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. (original) (raw)

Proc Natl Acad Sci U S A. 1992 Dec 15; 89(24): 11920–11924.

Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309.

Abstract

The carboxyl-terminal domain of RNA polymerase II contains a tandemly repeated heptapeptide sequence. Previous work has shown that this sequence is phosphorylated at multiple sites by a template-associated protein kinase, in a reaction that is closely associated with the initiation of RNA synthesis. We have purified this kinase to apparent homogeneity from human (HeLa) cells. The purified kinase phosphorylates native RNA polymerase II only in the presence of DNA and the general transcription factors TFIID (TBP), TFIIB, and TFIIF. Two kinase components are required for full activity: a catalytic component and a DNA-binding regulatory component. The regulatory component has been identified as Ku autoantigen, based on the molecular weights of its component polypeptides, its DNA-binding properties, and its reactivity with anti-Ku monoclonal antibodies. The Ku autoantigen recruits the catalytic component of the kinase to the template. Ku autoantigen has been previously proposed to interact with DNA by a characteristic bind-and-slide mechanism. This mode of interaction may provide a mechanism for targeting the kinase to the transcription complex and other DNA-bound substrates.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.


Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences