Quantitative evolutionary genomics: differential gene expression and male reproductive success in Drosophila melanogaster (original) (raw)

Abstract

We combined traditional quantitative genetics and oligonucleotide microarrays to examine within-population genetic variation in a trait closely related to fitness. The trait, male reproductive success under competitive conditions (MCRS), is of central importance to both life-history and sexual-selection theory. We identified 27 candidate genes whose expression levels were associated with within-population variation in MCRS. "High" MCRS was associated with low expression of a cytochrome P450 that causes pesticide resistance, suggesting a fitness cost to resistance. Two groups of metabolic proteins (glutathione transferases and phosphatases) were significantly over-represented, and a large portion of the candidates are genes involved in oxidative stress resistance, energy acquisition or energy storage. Genes expressed in accessory glands and testes were not over-represented among differentially expressed genes, but testis-expressed genes were significantly more likely to be upregulated in high MCRS genotypes. Finally, nine candidate genes that we identified had no previous functional annotation, and this experiment suggests that they play a role in male reproductive success.

Full Text

The Full Text of this article is available as a PDF (138.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal A. F. Sexual selection and the maintenance of sexual reproduction. Nature. 2001 Jun 7;411(6838):692–695. doi: 10.1038/35079590. [DOI] [PubMed] [Google Scholar]
  2. Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
  3. Bochdanovits Zoltán, van der Klis Herman, de Jong Gerdien. Covariation of larval gene expression and adult body size in natural populations of Drosophila melanogaster. Mol Biol Evol. 2003 Jun 27;20(11):1760–1766. doi: 10.1093/molbev/msg179. [DOI] [PubMed] [Google Scholar]
  4. Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003 Jan 22;19(2):185–193. doi: 10.1093/bioinformatics/19.2.185. [DOI] [PubMed] [Google Scholar]
  5. Boutanaev Alexander M., Kalmykova Alla I., Shevelyov Yuri Y., Nurminsky Dmitry I. Large clusters of co-expressed genes in the Drosophila genome. Nature. 2002 Dec 12;420(6916):666–669. doi: 10.1038/nature01216. [DOI] [PubMed] [Google Scholar]
  6. Chapman T. Seminal fluid-mediated fitness traits in Drosophila. Heredity (Edinb) 2001 Nov;87(Pt 5):511–521. doi: 10.1046/j.1365-2540.2001.00961.x. [DOI] [PubMed] [Google Scholar]
  7. Chu Tzu Ming, Weir Bruce, Wolfinger Russ. A systematic statistical linear modeling approach to oligonucleotide array experiments. Math Biosci. 2002 Mar;176(1):35–51. doi: 10.1016/s0025-5564(01)00107-9. [DOI] [PubMed] [Google Scholar]
  8. Daborn P. J., Yen J. L., Bogwitz M. R., Le Goff G., Feil E., Jeffers S., Tijet N., Perry T., Heckel D., Batterham P. A single p450 allele associated with insecticide resistance in Drosophila. Science. 2002 Sep 27;297(5590):2253–2256. doi: 10.1126/science.1074170. [DOI] [PubMed] [Google Scholar]
  9. Daborn P., Boundy S., Yen J., Pittendrigh B., ffrench-Constant R. DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics. 2001 Oct 5;266(4):556–563. doi: 10.1007/s004380100531. [DOI] [PubMed] [Google Scholar]
  10. Gibson Greg. Microarrays in ecology and evolution: a preview. Mol Ecol. 2002 Jan;11(1):17–24. doi: 10.1046/j.0962-1083.2001.01425.x. [DOI] [PubMed] [Google Scholar]
  11. Hoffmann A. A., Clancy D. J., Merton E. Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics. 1994 Mar;136(3):993–999. doi: 10.1093/genetics/136.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffmann A. A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics. 1998 Jan;148(1):221–231. doi: 10.1093/genetics/148.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Houle D., Morikawa B., Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. doi: 10.1093/genetics/143.3.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houle David, Kondrashov Alexey S. Coevolution of costly mate choice and condition-dependent display of good genes. Proc Biol Sci. 2002 Jan 7;269(1486):97–104. doi: 10.1098/rspb.2001.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Irizarry Rafael A., Hobbs Bridget, Collin Francois, Beazer-Barclay Yasmin D., Antonellis Kristen J., Scherf Uwe, Speed Terence P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003 Apr;4(2):249–264. doi: 10.1093/biostatistics/4.2.249. [DOI] [PubMed] [Google Scholar]
  16. Jansen Ritsert C. Studying complex biological systems using multifactorial perturbation. Nat Rev Genet. 2003 Feb;4(2):145–151. doi: 10.1038/nrg996. [DOI] [PubMed] [Google Scholar]
  17. Kotiaho J. S., Simmons L. W., Tomkins J. L. Towards a resolution of the lek paradox. Nature. 2001 Apr 5;410(6829):684–686. doi: 10.1038/35070557. [DOI] [PubMed] [Google Scholar]
  18. Le Goff G., Boundy S., Daborn P. J., Yen J. L., Sofer L., Lind R., Sabourault C., Madi-Ravazzi L., ffrench-Constant R. H. Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem Mol Biol. 2003 Jul;33(7):701–708. doi: 10.1016/s0965-1748(03)00064-x. [DOI] [PubMed] [Google Scholar]
  19. Montooth Kristi L., Marden James H., Clark Andrew G. Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila. Genetics. 2003 Oct;165(2):623–635. doi: 10.1093/genetics/165.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Partridge L., Prowse N. The effects of reproduction on longevity and fertility in male Drosophila melanogaster. J Insect Physiol. 1997 Jun;43(6):501–512. doi: 10.1016/s0022-1910(97)00014-0. [DOI] [PubMed] [Google Scholar]
  21. Sawicki Rafał, Singh Sharda P., Mondal Ashis K., Benes Helen, Zimniak Piotr. Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochem J. 2003 Mar 1;370(Pt 2):661–669. doi: 10.1042/BJ20021287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schadt Eric E., Monks Stephanie A., Drake Thomas A., Lusis Aldons J., Che Nam, Colinayo Veronica, Ruff Thomas G., Milligan Stephen B., Lamb John R., Cavet Guy. Genetics of gene expression surveyed in maize, mouse and man. Nature. 2003 Mar 20;422(6929):297–302. doi: 10.1038/nature01434. [DOI] [PubMed] [Google Scholar]
  23. Snook R. R., Cleland S. Y., Wolfner M. F., Karr T. L. Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics. 2000 May;155(1):167–178. doi: 10.1093/genetics/155.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tabakoff Boris, Bhave Sanjiv V., Hoffman Paula L. Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviors. J Neurosci. 2003 Jun 1;23(11):4491–4498. doi: 10.1523/JNEUROSCI.23-11-04491.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Toma Daniel P., White Kevin P., Hirsch Jerry, Greenspan Ralph J. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat Genet. 2002 Jun 3;31(4):349–353. doi: 10.1038/ng893. [DOI] [PubMed] [Google Scholar]
  26. Townsend Jeffrey P., Cavalieri Duccio, Hartl Daniel L. Population genetic variation in genome-wide gene expression. Mol Biol Evol. 2003 Apr 25;20(6):955–963. doi: 10.1093/molbev/msg106. [DOI] [PubMed] [Google Scholar]
  27. Wolfner M. F. Tokens of love: functions and regulation of Drosophila male accessory gland products. Insect Biochem Mol Biol. 1997 Mar;27(3):179–192. doi: 10.1016/s0965-1748(96)00084-7. [DOI] [PubMed] [Google Scholar]
  28. Wyckoff G. J., Wang W., Wu C. I. Rapid evolution of male reproductive genes in the descent of man. Nature. 2000 Jan 20;403(6767):304–309. doi: 10.1038/35002070. [DOI] [PubMed] [Google Scholar]