Expression of Maize Ferredoxin cDNA in Escherichia coli : Comparison of Photosynthetic and Nonphotosynthetic Ferredoxin Isoproteins and their Chimeric Molecule (original) (raw)
Abstract
Maize (Zea mays L.) has two types of ferredoxin (Fd) differentially expressed in photosynthetic and nonphotosynthetic organs. A cDNA fragment encoding the mature polypeptide of Fd III, an Fd isoprotein of the nonphotosynthetic type, was expressed in Escherichia coli, and the Fd was synthesized as a holo-form assembled with the [2Fe-2S] cluster, which was completely identical with authentic Fd III prepared from maize roots. This expression system made it possible to prepare Fd present at fairly low levels in plants in amounts sufficient for functional and structural studies. Comparison of electron transfer activity of Fd III with that of Fd I, an Fd isoprotein of the photosynthetic type, showed that Fd III was superior as an electron acceptor from NADPH, and Fd I was superior as an electron donor for NADP+, in reactions catalyzed by Fd-NADP+ reductase from maize leaf. The circular dichronism spectra of the two Fds also indicated a subtle difference in the geometry of their iron-sulfur clusters. These results are consistent with the view that photosynthetic and nonphotosynthetic Fds may be functionally differentiated. An artificial chimeric Fd, Fd III/Fd I, whose amino-terminal and carboxylterminal halves are derived from the corresponding regions of Fd III and Fd I, respectively, showed an activity and CD spectrum significantly similar to those of Fd I. This suggests that 18 amino acid substitutions between Fd III and Fd III/Fd I alter the properties of Fd III so that they resemble those of Fd I.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coghlan V. M., Vickery L. E. Expression of human ferredoxin and assembly of the [2Fe-2S] center in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Feb;86(3):835–839. doi: 10.1073/pnas.86.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hase T., Kimata Y., Yonekura K., Matsumura T., Sakakibara H. Molecular cloning and differential expression of the maize ferredoxin gene family. Plant Physiol. 1991 May;96(1):77–83. doi: 10.1104/pp.96.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hase T., Wada K., Matsubara H. Horsetail (Equisetum arvense) ferredoxins I and II Amino acid sequences and gene duplication. J Biochem. 1977 Jul;82(1):277–286. doi: 10.1093/oxfordjournals.jbchem.a131680. [DOI] [PubMed] [Google Scholar]
- Huisman J. G., Moorman A. F., Verkley F. N. In vitro synthesis of chloroplast ferredoxin as a high molecular weight precursor in a cell-free protein synthesizing system from wheat germs. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1121–1131. doi: 10.1016/0006-291x(78)90303-0. [DOI] [PubMed] [Google Scholar]
- Karplus P. A., Daniels M. J., Herriott J. R. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science. 1991 Jan 4;251(4989):60–66. [PubMed] [Google Scholar]
- Kimata Y., Hase T. Localization of ferredoxin isoproteins in mesophyll and bundle sheath cells in maize leaf. Plant Physiol. 1989 Apr;89(4):1193–1197. doi: 10.1104/pp.89.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knaff D. B., Hirasawa M. Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta. 1991 Jan 22;1056(2):93–125. doi: 10.1016/s0005-2728(05)80277-4. [DOI] [PubMed] [Google Scholar]
- Li H. M., Theg S. M., Bauerle C. M., Keegstra K. Metal-ion-center assembly of ferredoxin and plastocyanin in isolated chloroplasts. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6748–6752. doi: 10.1073/pnas.87.17.6748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masaki R., Wada K., Matsubara H. Chemical modification of spinach ferredoxin. Properties of acetylated spinach ferredoxin. J Biochem. 1977 Jan;81(1):1–9. doi: 10.1093/oxfordjournals.jbchem.a131423. [DOI] [PubMed] [Google Scholar]
- Morigasaki S., Takata K., Sanada Y., Wada K., Yee B. C., Shin S., Buchanan B. B. Novel forms of ferredoxin and ferredoxin-NADP reductase from spinach roots. Arch Biochem Biophys. 1990 Nov 15;283(1):75–80. doi: 10.1016/0003-9861(90)90614-5. [DOI] [PubMed] [Google Scholar]
- Morigasaki S., Takata K., Suzuki T., Wada K. Purification and Characterization of a Ferredoxin-NADP Oxidoreductase-Like Enzyme from Radish Root Tissues. Plant Physiol. 1990 Jul;93(3):896–901. doi: 10.1104/pp.93.3.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petering D. H., Palmer G. Properties of spinach ferredoxin in anaerobic urea solution: a comparison with the native protein. Arch Biochem Biophys. 1970 Dec;141(2):456–464. doi: 10.1016/0003-9861(70)90162-1. [DOI] [PubMed] [Google Scholar]
- Sakihama N., Shin M. Evidence from high-pressure liquid chromatography for the existence of two ferredoxins in plants. Arch Biochem Biophys. 1987 Aug 1;256(2):430–434. doi: 10.1016/0003-9861(87)90599-6. [DOI] [PubMed] [Google Scholar]
- Smeekens S., Bauerle C., Hageman J., Keegstra K., Weisbeek P. The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell. 1986 Aug 1;46(3):365–375. doi: 10.1016/0092-8674(86)90657-4. [DOI] [PubMed] [Google Scholar]
- Suzuki A., Oaks A., Jacquot J. P., Vidal J., Gadal P. An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase : physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase. Plant Physiol. 1985 Jun;78(2):374–378. doi: 10.1104/pp.78.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki S., Izumihara K., Hase T. Plastid import and iron-sulfur cluster assembly of photosynthetic and nonphotosynthetic ferredoxin isoproteins in maize. Plant Physiol. 1991 Sep;97(1):375–380. doi: 10.1104/pp.97.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagawa K., Arnon D. I. Oxidation-reduction potentials and stoichiometry of electron transfer in ferredoxins. Biochim Biophys Acta. 1968 Apr 2;153(3):602–613. doi: 10.1016/0005-2728(68)90188-6. [DOI] [PubMed] [Google Scholar]
- Takahashi Y., Mitsui A., Hase T., Matsubara H. Formation of the iron-sulfur cluster of ferredoxin in isolated chloroplasts. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2434–2437. doi: 10.1073/pnas.83.8.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukihara T., Fukuyama K., Mizushima M., Harioka T., Kusunoki M., Katsube Y., Hase T., Matsubara H. Structure of the [2Fe-2S] ferredoxin I from the blue-green alga Aphanothece sacrum at 2.2 A resolution. J Mol Biol. 1990 Nov 20;216(2):399–410. doi: 10.1016/S0022-2836(05)80330-4. [DOI] [PubMed] [Google Scholar]
- Vieira B. J., Colvert K. K., Davis D. J. Chemical modification and cross-linking as probes of regions on ferredoxin involved in its interaction with ferredoxin: NADP reductase. Biochim Biophys Acta. 1986 Aug 13;851(1):109–122. doi: 10.1016/0005-2728(86)90254-9. [DOI] [PubMed] [Google Scholar]
- Wada K., Onda M., Matsubara H. Amino acid sequences of ferredoxin isoproteins from radish roots. J Biochem. 1989 Apr;105(4):619–625. doi: 10.1093/oxfordjournals.jbchem.a122714. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]