Interaction of vesicular stomatitis virus with lipid vesicles: depletion of cholesterol and effect on virion membrane fluidity and infectivity (original) (raw)

Abstract

Interaction with excess unilamellar phosphatidylcholine (PC) vesicles resulted in depletion of as much as 90% of the cholesterol from the membrane of intact vesicular stomatitis (VS) virus. The cholesterol depletion was not significantly influenced by the proteolytic removal of virion glycoprotein spikes, but it was temperature dependent. Cholesterol depletion caused substantial reduction in anisotropy of the VS virion membrane as measured by fluorescence depolarization of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene; residual adsorbed vesicles represent a significant factor in this apparent increase in virion membrane fluidity. Interaction with PC vesicles resulted in a substantial loss of VS viral infectivity as measured by plating efficiency on L-cell monolayers. Reduction in infectivity appeared to be related to temperature-dependent depletion of virion cholesterol by PC vesicles. Interaction of VS virions with cholesterol-containing PC vesicles resulted in significantly less decline in infectivity, but attempts to restore cholesterol and infectivity to depleted VS virions were unsuccessful. Depletion of virion cholesterol apparently results through collision with PC vesicles rather than movement of cholesterol monomers or micelles through the aqueous phase, because PC vesicle-virion interaction in the presence of cholesterol oxidase did not result in substantial oxidation of translocated cholesterol.

320

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
  3. Barenholz Y., Moore N. F., Wagner R. R. Enveloped viruses as model membrane systems: microviscosity of vesicular stomatitis virus and host cell membranes. Biochemistry. 1976 Aug 10;15(16):3563–3570. doi: 10.1021/bi00661a026. [DOI] [PubMed] [Google Scholar]
  4. Bell F. P., Schwartz C. J. Exchangeability of cholesterol between swine serum lipoproteins and erythrocytes, in vitro. Biochim Biophys Acta. 1971 May 4;231(3):553–557. doi: 10.1016/0005-2760(71)90126-3. [DOI] [PubMed] [Google Scholar]
  5. Bishop D. H., Repik P., Obijeski J. F., Moore N. F., Wagner R. R. Restitution of infectivity to spikeless vesicular stomatitis virus by solubilized viral components. J Virol. 1975 Jul;16(1):75–84. doi: 10.1128/jvi.16.1.75-84.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloj B., Zilversmit D. B. Complete exchangeability of cholesterol in phosphatidylcholine/cholesterol vesicles of different degrees of unsaturation. Biochemistry. 1977 Sep 6;16(18):3943–3948. doi: 10.1021/bi00637a001. [DOI] [PubMed] [Google Scholar]
  7. Borochov H., Shinitzky M. Vertical displacement of membrane proteins mediated by changes in microviscosity. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4526–4530. doi: 10.1073/pnas.73.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charlton S. C., Olson J. S., Hong K. Y., Pownall H. J., Louie D. D., Smith L. C. Stopped flow kinetics of pyrene transfer between human high density lipoproteins. J Biol Chem. 1976 Dec 25;251(24):7952–7955. [PubMed] [Google Scholar]
  9. Cogan U., Shinitzky M., Weber G., Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry. 1973 Jan 30;12(3):521–528. doi: 10.1021/bi00727a026. [DOI] [PubMed] [Google Scholar]
  10. Grunze M., Deuticke B. Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Biochim Biophys Acta. 1974 Jul 12;356(1):125–130. doi: 10.1016/0005-2736(74)90300-9. [DOI] [PubMed] [Google Scholar]
  11. HENDRICKSON H. S., BALLOU C. E. ION EXCHANGE CHROMATOGRAPHY OF INTACT BRAIN PHOSPHOINOSITIDES ON DIETHYLAMINOETHYL CELLULOSE BY GRADIENT SALT ELUTION IN A MIXED SOLVENT SYSTEM. J Biol Chem. 1964 May;239:1369–1373. [PubMed] [Google Scholar]
  12. Haberland M. E., Reynolds J. A. Self-association of cholesterol in aqueous solution. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2313–2316. doi: 10.1073/pnas.70.8.2313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haran N., Shporer M. Proton magnetic resonance study of cholesterol transfer between egg yolk lecithin vesicles. Biochim Biophys Acta. 1977 Feb 14;465(1):11–18. doi: 10.1016/0005-2736(77)90351-0. [DOI] [PubMed] [Google Scholar]
  14. Haywood A. M. 'Phagocytosis' of sendai virus by model membranes. J Gen Virol. 1975 Oct;29(1):63–68. doi: 10.1099/0022-1317-29-1-63. [DOI] [PubMed] [Google Scholar]
  15. Heine J. W., Schnaitman C. A. Entry of vesicular stomatitis virus into L cells. J Virol. 1971 Nov;8(5):786–795. doi: 10.1128/jvi.8.5.786-795.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang C. H., Sipe J. P., Chow S. T., Martin R. B. Differential interaction of cholesterol with phosphatidylcholine on the inner and outer surfaces of lipid bilayer vesicles. Proc Natl Acad Sci U S A. 1974 Feb;71(2):359–362. doi: 10.1073/pnas.71.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huang C., Thompson T. E. Preparation of homogeneous, single-walled phosphatidylcholine vesicles. Methods Enzymol. 1974;32:485–489. doi: 10.1016/0076-6879(74)32048-4. [DOI] [PubMed] [Google Scholar]
  18. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  19. Inbar M., Shinitzky M. Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumor development. Proc Natl Acad Sci U S A. 1974 May;71(5):2128–2130. doi: 10.1073/pnas.71.5.2128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knipe D. M., Baltimore D., Lodish H. F. Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus. J Virol. 1977 Mar;21(3):1128–1139. doi: 10.1128/jvi.21.3.1128-1139.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lenard J., Rothman J. E. Transbilayer distribution and movement of cholesterol and phospholipid in the membrane of influenza virus. Proc Natl Acad Sci U S A. 1976 Feb;73(2):391–395. doi: 10.1073/pnas.73.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McSharry J. J., Wagner R. R. Lipid composition of purified vesicular stomatitis viruses. J Virol. 1971 Jan;7(1):59–70. doi: 10.1128/jvi.7.1.59-70.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mooney J. J., Dalrymple J. M., Alving C. R., Russell P. K. Interaction of Sindbis virus with liposomal model membranes. J Virol. 1975 Feb;15(2):225–231. doi: 10.1128/jvi.15.2.225-231.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore N. F., Barenholz Y., Wagner R. R. Microviscosity of togavirus membranes studied by fluorescence depolarization: influence of envelope proteins and the host cell. J Virol. 1976 Jul;19(1):126–135. doi: 10.1128/jvi.19.1.126-135.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore N. F., Patzer E. J., Barenholz Y., Wagner R. R. Effect of phospholipase C and cholesterol oxidase on membrane integrity, microviscosity, and infectivity of vesicular stomatitis virus. Biochemistry. 1977 Oct 18;16(21):4708–4715. doi: 10.1021/bi00640a027. [DOI] [PubMed] [Google Scholar]
  27. Moore N. F., Patzer E. J., Wagner R. R., Yeagle P. L., Hutton W. C., Martin R. B. The structure of vesicular stomatitis virus membrane. A phosphorus nuclear magnetic resonance approach. Biochim Biophys Acta. 1977 Jan 4;464(1):234–244. doi: 10.1016/0005-2736(77)90384-4. [DOI] [PubMed] [Google Scholar]
  28. Papahadjopoulos D., Miller N. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochim Biophys Acta. 1967 Sep 9;135(4):624–638. doi: 10.1016/0005-2736(67)90094-6. [DOI] [PubMed] [Google Scholar]
  29. Poznansky M., Lange Y. Transbilayer movement of cholesterol in dipalmitoyllecithin-cholesterol vesicles. Nature. 1976 Feb 5;259(5542):420–421. doi: 10.1038/259420a0. [DOI] [PubMed] [Google Scholar]
  30. SCHWENK E., WERTHESSEN N. T. Studies on the biosynthesis of cholesterol. III. Purification of C14-cholesterol from perfusions of livers and other organs. Arch Biochem Biophys. 1952 Oct;40(2):334–341. doi: 10.1016/0003-9861(52)90119-7. [DOI] [PubMed] [Google Scholar]
  31. Schloemer R. H., Wagner R. R. Association of vesicular stomatitis virus glycoprotein with virion membrane: characterization of the lipophilic tail fragment. J Virol. 1975 Aug;16(2):237–240. doi: 10.1128/jvi.16.2.237-240.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shinitzky M., Inbar M. Microviscosity parameters and protein mobility in biological membranes. Biochim Biophys Acta. 1976 Apr 16;433(1):133–149. doi: 10.1016/0005-2736(76)90183-8. [DOI] [PubMed] [Google Scholar]
  33. de Kruyff B., Demel R. A., van Deenen L. L. The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intact Acholeplasma laidlawii cell membranes and derived liposomes. Biochim Biophys Acta. 1972 Jan 17;255(1):331–347. doi: 10.1016/0005-2736(72)90032-6. [DOI] [PubMed] [Google Scholar]