MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes (original) (raw)

Abstract

Shortly after their birth, postmitotic mononucleated myoblasts in myotomes, limb buds, and conventional muscle cultures elongate and assemble a cohort of myofibrillar proteins into definitively striated myofibrils. MyoD induces a number of immortalized and/or transformed nonmuscle cells to express desmin and several myofibrillar proteins and to fuse into myosacs. We now report that MyoD converts normal dermal fibroblasts, chondroblasts, gizzard smooth muscle, and pigmented retinal epithelial cells into elongated postmitotic mononucleated striated myoblasts. The sarcomeric localization of antibodies to desmin, alpha-actinin, titin, troponin-I, alpha-actin, myosin heavy chain, and myomesin in these converted myoblasts are indistinguishable from in vivo and in vitro normal myoblasts. Converted myoblasts fuse into typical anisodiametric multinucleated myotubes that often contract spontaneously. Conversion and subsequent expression of the skeletal myogenic program are autonomous events, occurring in four nonmuscle microenvironments consisting of different combinations of foreign extracellular matrix molecules. Early events associated with conversion by MyoD involve (i) withdrawal from the cell cycle, (ii) down-regulation of the subverted cell's ongoing differentiation program, and (iii) initiation of desmin synthesis in presumptive myoblasts and dramatic redistribution of microtubules and desmin intermediate filaments in postmitotic myoblasts.

7988

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  2. Dienstman S. R., Holtzer H. Skeletal myogenesis. Control of proliferation in a normal cell lineage. Exp Cell Res. 1977 Jul;107(2):355–364. doi: 10.1016/0014-4827(77)90357-3. [DOI] [PubMed] [Google Scholar]
  3. Dlugosz A. A., Tapscott S. J., Holtzer H. Effects of phorbol 12-myristate 13-acetate on the differentiation program of embryonic chick skeletal myoblasts. Cancer Res. 1983 Jun;43(6):2780–2789. [PubMed] [Google Scholar]
  4. HOLTZER H., MARSHALL J. M., Jr, FINCK H. An analysis of myogenesis by the use of fluorescent antimyosin. J Biophys Biochem Cytol. 1957 Sep 25;3(5):705–724. doi: 10.1083/jcb.3.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hill C. S., Duran S., Lin Z. X., Weber K., Holtzer H. Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts. J Cell Biol. 1986 Dec;103(6 Pt 1):2185–2196. doi: 10.1083/jcb.103.6.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holtzer H., Bennett G. S., Tapscott S. J., Croop J. M., Toyama Y. Intermediate-size filaments: changes in synthesis and distribution in cells of the myogenic and neurogenic lineages. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):317–329. doi: 10.1101/sqb.1982.046.01.033. [DOI] [PubMed] [Google Scholar]
  7. Holtzer H., Rubinstein N., Fellini S., Yeoh G., Chi J., Birnbaum J., Okayama M. Lineages, quantal cell cycles, and the generation of cell diversity. Q Rev Biophys. 1975 Nov;8(4):523–557. doi: 10.1017/s0033583500001980. [DOI] [PubMed] [Google Scholar]
  8. Holtzer H., Sasse J., Horwitz A., Antin P., Pacifici M. Myogenic lineages and myofibrillogenesis. Bibl Anat. 1986;(29):109–125. [PubMed] [Google Scholar]
  9. Hopwood N. D., Pluck A., Gurdon J. B. MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J. 1989 Nov;8(11):3409–3417. doi: 10.1002/j.1460-2075.1989.tb08505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaufman S. J., Foster R. F. Replicating myoblasts express a muscle-specific phenotype. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9606–9610. doi: 10.1073/pnas.85.24.9606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lin Z. Y., Dechesne C. A., Eldridge J., Paterson B. M. An avian muscle factor related to MyoD1 activates muscle-specific promoters in nonmuscle cells of different germ-layer origin and in BrdU-treated myoblasts. Genes Dev. 1989 Jul;3(7):986–996. doi: 10.1101/gad.3.7.986. [DOI] [PubMed] [Google Scholar]
  12. Nadal-Ginard B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 1978 Nov;15(3):855–864. doi: 10.1016/0092-8674(78)90270-2. [DOI] [PubMed] [Google Scholar]
  13. Nameroff M., Holtzer H. Contace-mediated reversible suppression of myogenesis. Dev Biol. 1969 Apr;19(4):380–396. doi: 10.1016/0012-1606(69)90049-9. [DOI] [PubMed] [Google Scholar]
  14. Nguyen H. T., Medford R. M., Nadal-Ginard B. Reversibility of muscle differentiation in the absence of commitment: analysis of a myogenic cell line temperature-sensitive for commitment. Cell. 1983 Aug;34(1):281–293. doi: 10.1016/0092-8674(83)90159-9. [DOI] [PubMed] [Google Scholar]
  15. Okazaki K., Holtzer H. Myogenesis: fusion, myosin synthesis, and the mitotic cycle. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1484–1490. doi: 10.1073/pnas.56.5.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pacifici M., Boettiger D., Roby K., Holtzer H. Transformation of chondroblasts by Rous sarcoma virus and synthesis of the sulfated proteoglycan matrix. Cell. 1977 Aug;11(4):891–899. doi: 10.1016/0092-8674(77)90300-2. [DOI] [PubMed] [Google Scholar]
  17. Payette R., Biehl J., Toyama Y., Holtzer S., Holtzer H. Effects of 12-O-tetradecanoylphorbol-13-acetate on the differentiation of avian melanocytes. Cancer Res. 1980 Jul;40(7):2465–2474. [PubMed] [Google Scholar]
  18. Sassoon D., Lyons G., Wright W. E., Lin V., Lassar A., Weintraub H., Buckingham M. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature. 1989 Sep 28;341(6240):303–307. doi: 10.1038/341303a0. [DOI] [PubMed] [Google Scholar]
  19. Schneider M. D., Perryman M. B., Payne P. A., Spizz G., Roberts R., Olson E. N. Autonomous expression of c-myc in BC3H1 cells partially inhibits but does not prevent myogenic differentiation. Mol Cell Biol. 1987 May;7(5):1973–1977. doi: 10.1128/mcb.7.5.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schultheiss T., Lin Z. X., Lu M. H., Murray J., Fischman D. A., Weber K., Masaki T., Imamura M., Holtzer H. Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol. 1990 Apr;110(4):1159–1172. doi: 10.1083/jcb.110.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tapscott S. J., Lassar A. B., Davis R. L., Weintraub H. 5-bromo-2'-deoxyuridine blocks myogenesis by extinguishing expression of MyoD1. Science. 1989 Aug 4;245(4917):532–536. doi: 10.1126/science.2547249. [DOI] [PubMed] [Google Scholar]
  22. Taubman M. B., Smith C. W., Izumo S., Grant J. W., Endo T., Andreadis A., Nadal-Ginard B. The expression of sarcomeric muscle-specific contractile protein genes in BC3H1 cells: BC3H1 cells resemble skeletal myoblasts that are defective for commitment to terminal differentiation. J Cell Biol. 1989 May;108(5):1799–1806. doi: 10.1083/jcb.108.5.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weintraub H., Tapscott S. J., Davis R. L., Thayer M. J., Adam M. A., Lassar A. B., Miller A. D. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5434–5438. doi: 10.1073/pnas.86.14.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yeoh G. C., Holtzer H. The effect of cell density, conditioned medium and cytosine arabinoside on myogenesis in primary and secondary cultures. Exp Cell Res. 1977 Jan;104(1):63–78. doi: 10.1016/0014-4827(77)90069-6. [DOI] [PubMed] [Google Scholar]