The Pattern of Mammalian Evolution and the Relative Rate of Molecular Evolution (original) (raw)
Abstract
The rates of nucleotide substitution at four genes in four orders of eutherian mammals are compared in relative rate tests using marsupial orthologs for reference. There is no evidence of systematic variation in evolutionary rate among the orders. The sequences are used to reconstruct the phylogeny of the orders using maximum likelihood, parsimony and compatibility methods. A branching order of rodent then ungulate then primate and lagomorph is overwhelmingly indicated. The nodes of the nucleotide based cladograms are widely separated in relation to the total lengths of the branches. The assumption of a star phylogeny that underlies Kimura's test for molecular evolutionary rate variation is shown to be invalid for eutherian mammals. Excess variance in nucleotide or amino acid differences between mammalian orders, above that predicted by neutral theory is explained better by variation in divergence time than by variation in evolutionary rate.
Full Text
The Full Text of this article is available as a PDF (878.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Czelusniak J., Goodman M., Hewett-Emmett D., Weiss M. L., Venta P. J., Tashian R. E. Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes. Nature. 1982 Jul 15;298(5871):297–300. doi: 10.1038/298297a0. [DOI] [PubMed] [Google Scholar]
- Easteal S. Rate constancy of globin gene evolution in placental mammals. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7622–7626. doi: 10.1073/pnas.85.20.7622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
- Gillespie J. H. Natural selection and the molecular clock. Mol Biol Evol. 1986 Mar;3(2):138–155. doi: 10.1093/oxfordjournals.molbev.a040382. [DOI] [PubMed] [Google Scholar]
- Gillespie J. H. The molecular clock may be an episodic clock. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8009–8013. doi: 10.1073/pnas.81.24.8009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall L., Craig R. K., Edbrooke M. R., Campbell P. N. Comparison of the nucleotide sequence of cloned human and guinea-pig pre-alpha-lactalbumin cDNA with that of chick pre-lysozyme cDNA suggests evolution from a common ancestral gene. Nucleic Acids Res. 1982 Jun 11;10(11):3503–3515. doi: 10.1093/nar/10.11.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
- Kimura M. Molecular evolutionary clock and the neutral theory. J Mol Evol. 1987;26(1-2):24–33. doi: 10.1007/BF02111279. [DOI] [PubMed] [Google Scholar]
- Koop B. F., Goodman M. Evolutionary and developmental aspects of two hemoglobin beta-chain genes (epsilon M and beta M) of opossum. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3893–3897. doi: 10.1073/pnas.85.11.3893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumagai I., Tamaki E., Kakinuma S., Miura K. Molecular cloning and sequencing of cDNA encoding goat pre alpha-lactalbumin. J Biochem. 1987 Feb;101(2):511–517. doi: 10.1093/oxfordjournals.jbchem.a121938. [DOI] [PubMed] [Google Scholar]
- Li W. H., Wolfe K. H., Sourdis J., Sharp P. M. Reconstruction of phylogenetic trees and estimation of divergence times under nonconstant rates of evolution. Cold Spring Harb Symp Quant Biol. 1987;52:847–856. doi: 10.1101/sqb.1987.052.01.092. [DOI] [PubMed] [Google Scholar]
- Li W. H., Wu C. I., Luo C. C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol. 1985 Mar;2(2):150–174. doi: 10.1093/oxfordjournals.molbev.a040343. [DOI] [PubMed] [Google Scholar]
- Ota T., Kimura M. On the constancy of the evolutionary rate of cistrons. J Mol Evol. 1971;1(1):18–25. doi: 10.1007/BF01659391. [DOI] [PubMed] [Google Scholar]
- Penny D., Hendy M. Estimating the reliability of evolutionary trees. Mol Biol Evol. 1986 Sep;3(5):403–417. doi: 10.1093/oxfordjournals.molbev.a040407. [DOI] [PubMed] [Google Scholar]
- Sarich V. M., Wilson A. C. Immunological time scale for hominid evolution. Science. 1967 Dec 1;158(3805):1200–1203. doi: 10.1126/science.158.3805.1200. [DOI] [PubMed] [Google Scholar]
- Takahata N. On the overdispersed molecular clock. Genetics. 1987 May;116(1):169–179. doi: 10.1093/genetics/116.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wainwright B., Hope R. Cloning and chromosomal location of the alpha- and beta-globin genes from a marsupial. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8105–8108. doi: 10.1073/pnas.82.23.8105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]