A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation (original) (raw)
Abstract
We have previously characterized a monoclonal antibody, S12, that binds only to activated platelets (McEver, R.P., and M.N. Martin, 1984, J. Biol. Chem., 259:9799-9804). It identifies a platelet membrane protein of Mr 140,000, which we have designated as GMP-140. Using immunocytochemical techniques we have now localized this protein in unstimulated and thrombin-stimulated platelets. Polyclonal antibodies to purified GMP-140 were used to enhance the sensitivity of detection. Nonpermeabilized, unstimulated platelets, incubated with anti-GMP-140 antibodies, and then with IgG-gold probes, showed very little label for GMP-140 along their plasma membranes. In contrast, thrombin-stimulated platelets exhibited at least a 50-fold increase in the amount of label along the plasma membrane. On frozen thin sections of unstimulated platelets we observed immunogold label along the alpha-granule membranes. We also employed the more sensitive technique of permeabilizing with saponin unstimulated platelets in suspension, and then incubating the cells with polyclonal anti-GMP-140 antibodies and Fab-peroxidase conjugate. Alpha-granule membranes showed heavy reaction product, but no other intracellular organelles were specifically labeled. These results demonstrate that GMP-140 is an alpha-granule membrane protein that is expressed on the platelet plasma membrane during degranulation.
Full Text
The Full Text of this article is available as a PDF (937.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
- Buckley K., Kelly R. B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol. 1985 Apr;100(4):1284–1294. doi: 10.1083/jcb.100.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carty S. E., Johnson R. G., Scarpa A. Serotonin transport in isolated platelet granules. Coupling to the electrochemical proton gradient. J Biol Chem. 1981 Nov 10;256(21):11244–11250. [PubMed] [Google Scholar]
- Dowd D. J., Edwards C., Englert D., Mazurkiewicz J. E., Ye H. Z. Immunofluorescent evidence for exocytosis and internalization of secretory granule membrane in isolated chromaffin cells. Neuroscience. 1983 Nov;10(3):1025–1033. doi: 10.1016/0306-4522(83)90240-3. [DOI] [PubMed] [Google Scholar]
- Fishkes H., Rudnick G. Bioenergetics of serotonin transport by membrane vesicles derived from platelet dense granules. J Biol Chem. 1982 May 25;257(10):5671–5677. [PubMed] [Google Scholar]
- George J. N., Nurden A. T., Phillips D. R. Molecular defects in interactions of platelets with the vessel wall. N Engl J Med. 1984 Oct 25;311(17):1084–1098. doi: 10.1056/NEJM198410253111705. [DOI] [PubMed] [Google Scholar]
- Gogstad G. O., Hagen I., Korsmo R., Solum N. O. Characterization of the proteins of isolated human platelet alpha-granules. Evidence for a separate alpha-granule-pool of the glycoproteins IIb and IIIa. Biochim Biophys Acta. 1981 Sep 29;670(2):150–162. doi: 10.1016/0005-2795(81)90003-9. [DOI] [PubMed] [Google Scholar]
- Gogstad G. O., Hagen I., Korsmo R., Solum N. O. Evidence for release of soluble, but not of membrane-integrated, proteins from human platelet alpha-granules. Biochim Biophys Acta. 1982 Mar 18;702(1):81–89. doi: 10.1016/0167-4838(82)90029-2. [DOI] [PubMed] [Google Scholar]
- Gogstad G. O., Krutnes M. B., Hetland O., Solum N. O. Comparison of protein and lipid composition of the human platelet alpha-granule membranes and glycerol lysis membranes. Biochim Biophys Acta. 1983 Aug 10;732(3):519–530. doi: 10.1016/0005-2736(83)90228-6. [DOI] [PubMed] [Google Scholar]
- Greenberg C. S., Shuman M. A. Specific binding of blood coagulation factor XIIIa to thrombin-stimulated platelets. J Biol Chem. 1984 Dec 10;259(23):14721–14727. [PubMed] [Google Scholar]
- Hsu-Lin S., Berman C. L., Furie B. C., August D., Furie B. A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J Biol Chem. 1984 Jul 25;259(14):9121–9126. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Majerus P. W., Miletich J. P. Relationships between platelets and coagulation factors in hemostasis. Annu Rev Med. 1978;29:41–49. doi: 10.1146/annurev.me.29.020178.000353. [DOI] [PubMed] [Google Scholar]
- McEver R. P., Martin M. N. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J Biol Chem. 1984 Aug 10;259(15):9799–9804. [PubMed] [Google Scholar]
- Menashi S., Weintroub H., Crawford N. Characterization of human platelet surface and intracellular membranes isolated by free flow electrophoresis. J Biol Chem. 1981 Apr 25;256(8):4095–4101. [PubMed] [Google Scholar]
- Nurden A. T., Dupuis D., Kunicki T. J., Caen J. P. Analysis of the glycoprotein and protein composition of Bernard-Soulier platelets by single and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Clin Invest. 1981 May;67(5):1431–1440. doi: 10.1172/JCI110172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patzak A., Böck G., Fischer-Colbrie R., Schauenstein K., Schmidt W., Lingg G., Winkler H. Exocytotic exposure and retrieval of membrane antigens of chromaffin granules: quantitative evaluation of immunofluorescence on the surface of chromaffin cells. J Cell Biol. 1984 May;98(5):1817–1824. doi: 10.1083/jcb.98.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips D. R., Agin P. P. Platelet membrane defects in Glanzmann's thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest. 1977 Sep;60(3):535–545. doi: 10.1172/JCI108805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. H., Burridge K., Wilson S. P., Kirshner N. Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells. J Cell Biol. 1983 Dec;97(6):1906–1917. doi: 10.1083/jcb.97.6.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sander H. J., Slot J. W., Bouma B. N., Bolhuis P. A., Pepper D. S., Sixma J. J. Immunocytochemical localization of fibrinogen, platelet factor 4, and beta thromboglobulin in thin frozen sections of human blood platelets. J Clin Invest. 1983 Oct;72(4):1277–1287. doi: 10.1172/JCI111084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stenberg P. E., Shuman M. A., Levine S. P., Bainton D. F. Optimal techniques for the immunocytochemical demonstration of beta-thromboglobulin, platelet factor 4, and fibrinogen in the alpha granules of unstimulated platelets. Histochem J. 1984 Sep;16(9):983–1001. doi: 10.1007/BF01003853. [DOI] [PubMed] [Google Scholar]
- Stenberg P. E., Shuman M. A., Levine S. P., Bainton D. F. Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol. 1984 Feb;98(2):748–760. doi: 10.1083/jcb.98.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Meulen J., Furuya W., Grinstein S. Isolation and partial characterization of platelet alpha-granule membranes. J Membr Biol. 1983;71(1-2):47–59. doi: 10.1007/BF01870674. [DOI] [PubMed] [Google Scholar]
- Witte L. D., Kaplan K. L., Nossel H. L., Lages B. A., Weiss H. J., Goodman D. S. Studies of the release from human platelets of the growth factor for cultured human arterial smooth muscle cells. Circ Res. 1978 Mar;42(3):402–409. doi: 10.1161/01.res.42.3.402. [DOI] [PubMed] [Google Scholar]