Suprabasal 40 kd keratin (K19) expression as an immunohistologic marker of premalignancy in oral epithelium (original) (raw)

Abstract

The authors have studied the expression of keratin 19 in normal oral mucosa and in oral lesions exhibiting a range of histopathologic changes that are thought to precede squamous cell carcinoma. Formalin-fixed, paraffin-embedded sections were pretreated with pronase and stained with a K19-specific antibody by the avidin-biotin immunoperoxidase method. In nonkeratinized mucosa, whether normal or benign hyperplastic, K19 was detectable in the basal cell layer. In keratinized mucosa, whether normal or benign hyperplastic, there was no detectable K19. All lesions from any oral site that exhibited atypia diagnosed from hematoxylin and eosin stained sections as moderate-to-severe dysplasia or carcinoma in situ, whether hyperkeratotic or not, stained strongly for K19 in the basal and suprabasal cell layers. The number of cell layers that were K19-positive correlated with the level in the epithelium to which dysplasia persisted. Suprabasal K19 staining tended to occur in regions of the epithelium in which expression of the terminal differentiation protein involucrin was delayed or absent. Thus, K19 expression may be linked to the retention of stem cell character or a state otherwise uncommitted to terminal squamous differentiation. Suprabasal K19 staining is clearly correlated with premalignant change in oral epithelium and therefore promises to be a useful tool in oral histopathologic diagnosis.

89

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks-Schlegel S. P., Harris C. C. Tissue-specific expression of keratin proteins in human esophageal and epidermal epithelium and their cultured keratinocytes. Exp Cell Res. 1983 Jul;146(2):271–280. doi: 10.1016/0014-4827(83)90129-5. [DOI] [PubMed] [Google Scholar]
  2. Bartek J., Taylor-Papadimitriou J., Miller N., Millis R. Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumours. Int J Cancer. 1985 Sep 15;36(3):299–306. [PubMed] [Google Scholar]
  3. Battifora H., Kopinski M. The influence of protease digestion and duration of fixation on the immunostaining of keratins. A comparison of formalin and ethanol fixation. J Histochem Cytochem. 1986 Aug;34(8):1095–1100. doi: 10.1177/34.8.2426335. [DOI] [PubMed] [Google Scholar]
  4. Bosch F. X., Leube R. E., Achtstätter T., Moll R., Franke W. W. Expression of simple epithelial type cytokeratins in stratified epithelia as detected by immunolocalization and hybridization in situ. J Cell Biol. 1988 May;106(5):1635–1648. doi: 10.1083/jcb.106.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connell N. D., Rheinwald J. G. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell. 1983 Aug;34(1):245–253. doi: 10.1016/0092-8674(83)90155-1. [DOI] [PubMed] [Google Scholar]
  6. Cooper D., Schermer A., Sun T. T. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: strategies, applications, and limitations. Lab Invest. 1985 Mar;52(3):243–256. [PubMed] [Google Scholar]
  7. Dixon I. S., Stanley M. A. Immunofluorescent studies of human cervical epithelia in vivo and in vitro using antibodies against specific keratin components. Mol Biol Med. 1984 Feb;2(1):37–51. [PubMed] [Google Scholar]
  8. Fuchs E. V., Coppock S. M., Green H., Cleveland D. W. Two distinct classes of keratin genes and their evolutionary significance. Cell. 1981 Nov;27(1 Pt 2):75–84. doi: 10.1016/0092-8674(81)90362-7. [DOI] [PubMed] [Google Scholar]
  9. Fuchs E., Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell. 1981 Sep;25(3):617–625. doi: 10.1016/0092-8674(81)90169-0. [DOI] [PubMed] [Google Scholar]
  10. Gatter K. C., Alcock C., Heryet A., Pulford K. A., Heyderman E., Taylor-Papadimitriou J., Stein H., Mason D. Y. The differential diagnosis of routinely processed anaplastic tumors using monoclonal antibodies. Am J Clin Pathol. 1984 Jul;82(1):33–43. doi: 10.1093/ajcp/82.1.33. [DOI] [PubMed] [Google Scholar]
  11. Karsten U., Papsdorf G., Roloff G., Stolley P., Abel H., Walther I., Weiss H. Monoclonal anti-cytokeratin antibody from a hybridoma clone generated by electrofusion. Eur J Cancer Clin Oncol. 1985 Jun;21(6):733–740. doi: 10.1016/0277-5379(85)90271-8. [DOI] [PubMed] [Google Scholar]
  12. Lane E. B., Bártek J., Purkis P. E., Leigh I. M. Keratin antigens in differentiating skin. Ann N Y Acad Sci. 1985;455:241–258. doi: 10.1111/j.1749-6632.1985.tb50415.x. [DOI] [PubMed] [Google Scholar]
  13. Mashberg A., Meyers H. Anatomical site and size of 222 early asymptomatic oral squamous cell carcinomas: a continuing prospective study of oral cancer. II. Cancer. 1976 May;37(5):2149–2157. doi: 10.1002/1097-0142(197605)37:5<2149::aid-cncr2820370502>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  14. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  15. Moll R., Krepler R., Franke W. W. Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation. 1983;23(3):256–269. doi: 10.1111/j.1432-0436.1982.tb01291.x. [DOI] [PubMed] [Google Scholar]
  16. Moll R., Levy R., Czernobilsky B., Hohlweg-Majert P., Dallenbach-Hellweg G., Franke W. W. Cytokeratins of normal epithelia and some neoplasms of the female genital tract. Lab Invest. 1983 Nov;49(5):599–610. [PubMed] [Google Scholar]
  17. Ouhayoun J. P., Gosselin F., Forest N., Winter S., Franke W. W. Cytokeratin patterns of human oral epithelia: differences in cytokeratin synthesis in gingival epithelium and the adjacent alveolar mucosa. Differentiation. 1985;30(2):123–129. doi: 10.1111/j.1432-0436.1985.tb00523.x. [DOI] [PubMed] [Google Scholar]
  18. Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
  19. Rich A. M., Radden B. G. Squamous cell carcinoma of the oral mucosa: a review of 244 cases in Australia. J Oral Pathol. 1984 Oct;13(5):459–471. doi: 10.1111/j.1600-0714.1984.tb01447.x. [DOI] [PubMed] [Google Scholar]
  20. Warhol M. J., Antonioli D. A., Pinkus G. S., Burke L., Rice R. H. Immunoperoxidase staining for involucrin: a potential diagnostic aid in cervicovaginal pathology. Hum Pathol. 1982 Dec;13(12):1095–1099. doi: 10.1016/s0046-8177(82)80245-1. [DOI] [PubMed] [Google Scholar]
  21. Wu Y. J., Parker L. M., Binder N. E., Beckett M. A., Sinard J. H., Griffiths C. T., Rheinwald J. G. The mesothelial keratins: a new family of cytoskeletal proteins identified in cultured mesothelial cells and nonkeratinizing epithelia. Cell. 1982 Dec;31(3 Pt 2):693–703. doi: 10.1016/0092-8674(82)90324-5. [DOI] [PubMed] [Google Scholar]
  22. Wu Y. J., Rheinwald J. G. A new small (40 kd) keratin filament protein made by some cultured human squamous cell carcinomas. Cell. 1981 Sep;25(3):627–635. doi: 10.1016/0092-8674(81)90170-7. [DOI] [PubMed] [Google Scholar]