Phenotypic and Molecular Analysis of the Facets, a Group of Intronic Mutations at the Notch Locus of Drosophila Melanogaster Which Affect Postembryonic Development (original) (raw)

Abstract

The function of the Notch locus of Drosophila melanogaster is essential for normal development both during embryogenesis and during postembryonic stages. In the embryo its function is necessary for the correct segregation of neural from epidermal lineages. During postembryonic stages Notch exhibits pleiotropic effects that are both tissue- and stage-specific. Here, we examine a group of six recessive mutations, the facets (fa, fa(3), fa(g), fa(g-2), fa(fx) and fa(sw)), which affect eye morphology and have been previously shown to be associated with the insertion of transposable elements in an intronic region of Notch. The analysis of revertants has shown that the mutant phenotype depends on the presence of the transposable element and that the disruption of the wild-type sequence organization per se is not its cause. Four of these alleles, even though they are associated with the insertion of the same transposable element, display considerably different phenotypes. Therefore, no simple correlation exists between the mutant phenotype and the type of inserted element. A comparison of the tissue localization of the Notch and the transposable element transcripts revealed that in the third larval instar the elements are transcribed in both orientations in tissues in which Notch is also transcriptionally active. The complexity of the defects associated with the facet alleles, as well as the findings of the transcriptional analysis, indicate that a mutational mechanism based solely on transcriptional interference is not sufficient to explain the nature of the mutational event. It is likely that in these mutations alterations, in the temporal and/or spatial context caused by transcriptional and perhaps post-transcriptional interference mechanisms by the inserted elements, may be responsible for the mutant phenotype.

Full Text

The Full Text of this article is available as a PDF (9.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artavanis-Tsakonas S., Muskavitch M. A., Yedvobnick B. Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1977–1981. doi: 10.1073/pnas.80.7.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Artavanis-Tsakonas S. The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genet. 1988 Apr;4(4):95–100. doi: 10.1016/0168-9525(88)90096-0. [DOI] [PubMed] [Google Scholar]
  3. Bender W., Akam M., Karch F., Beachy P. A., Peifer M., Spierer P., Lewis E. B., Hogness D. S. Molecular Genetics of the Bithorax Complex in Drosophila melanogaster. Science. 1983 Jul 1;221(4605):23–29. doi: 10.1126/science.221.4605.23. [DOI] [PubMed] [Google Scholar]
  4. Carramolino L., Ruiz-Gomez M., Guerrero M. del C., Campuzano S., Modolell J. DNA map of mutations at the scute locus of Drosophila melanogaster. EMBO J. 1982;1(10):1185–1191. doi: 10.1002/j.1460-2075.1982.tb00011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grimwade B. G., Muskavitch M. A., Welshons W. J., Yedvobnick B., Artavanis-Tsakonas S. The molecular genetics of the Notch locus in Drosophila melanogaster. Dev Biol. 1985 Feb;107(2):503–519. doi: 10.1016/0012-1606(85)90331-8. [DOI] [PubMed] [Google Scholar]
  6. Harte P. J., Kankel D. R. Analysis of visual system development in Drosophila melanogaster: mutations at the Glued locus. Dev Biol. 1983 Sep;99(1):88–102. doi: 10.1016/0012-1606(83)90256-7. [DOI] [PubMed] [Google Scholar]
  7. Hartley D. A., Xu T. A., Artavanis-Tsakonas S. The embryonic expression of the Notch locus of Drosophila melanogaster and the implications of point mutations in the extracellular EGF-like domain of the predicted protein. EMBO J. 1987 Nov;6(11):3407–3417. doi: 10.1002/j.1460-2075.1987.tb02664.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kidd S., Lockett T. J., Young M. W. The Notch locus of Drosophila melanogaster. Cell. 1983 Sep;34(2):421–433. doi: 10.1016/0092-8674(83)90376-8. [DOI] [PubMed] [Google Scholar]
  9. Kidd S., Young M. W. Transposon-dependent mutant phenotypes at the Notch locus of Drosophila. Nature. 1986 Sep 4;323(6083):89–91. doi: 10.1038/323089a0. [DOI] [PubMed] [Google Scholar]
  10. McGinnis W., Shermoen A. W., Beckendorf S. K. A transposable element inserted just 5' to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell. 1983 Aug;34(1):75–84. doi: 10.1016/0092-8674(83)90137-x. [DOI] [PubMed] [Google Scholar]
  11. Meyerowitz E. M., Kankel D. R. A genetic analysis of visual system development in Drosophilia melanogaster. Dev Biol. 1978 Jan;62(1):112–142. doi: 10.1016/0012-1606(78)90096-9. [DOI] [PubMed] [Google Scholar]
  12. Parkhurst S. M., Corces V. G. Forked, gypsys, and suppressors in Drosophila. Cell. 1985 Jun;41(2):429–437. doi: 10.1016/s0092-8674(85)80016-7. [DOI] [PubMed] [Google Scholar]
  13. Welshons W. J. Genetic basis for two types of recessive lethality at the notch locus of Drosophila. Genetics. 1971 Jun;68(2):259–268. doi: 10.1093/genetics/68.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wright T. R. The genetics of embryogenesis in Drosophila. Adv Genet. 1970;15:261–395. doi: 10.1016/s0065-2660(08)60075-9. [DOI] [PubMed] [Google Scholar]
  15. Yedvobnick B., Muskavitch M. A., Wharton K. A., Halpern M. E., Paul E., Grimwade B. G., Artavanis-Tsakonas S. Molecular genetics of Drosophila neurogenesis. Cold Spring Harb Symp Quant Biol. 1985;50:841–854. doi: 10.1101/sqb.1985.050.01.102. [DOI] [PubMed] [Google Scholar]
  16. Zachar Z., Bingham P. M. Regulation of white locus expression: the structure of mutant alleles at the white locus of Drosophila melanogaster. Cell. 1982 Sep;30(2):529–541. doi: 10.1016/0092-8674(82)90250-1. [DOI] [PubMed] [Google Scholar]