Migration patterns of dendritic cells in the mouse. Homing to T cell- dependent areas of spleen, and binding within marginal zone (original) (raw)

Abstract

Using quantitative techniques we have shown elsewhere that dendritic cells (DC) migrate from blood into the spleen, under the control of T cells. Here we traced the localization of DC within the spleen and sought to explain the means by which they entered. DC were labeled with a fluorochrome, Hoescht 33342, and injected intravenously. Spleens were removed 3 or 24 h later and DC were visualized within particular areas that were defined by mAbs and FITC anti-Igs. At 3 h most DC were in the red pulp, whereas by 24 h the majority had homed to T-dependent areas of the white pulp and may have become interdigitating cells. Lymphoid DC, isolated from spleen and perhaps normally present in blood, may thus be a migratory stage distinct from the relatively fixed interdigitating cells. We also developed a frozen section assay to investigate the interaction of DC with various lymphoid elements. When DC were incubated on sections of spleen, at 37 degrees C but not at 4 degrees C they attached specifically within the marginal zone and did not bind to T areas; in contrast, macrophages attached only to red pulp and T cells did not bind specifically. However, DC did not bind to sections of mesenteric lymph node, whereas T cells localized in particular regions at 4 degrees C but not at 37 degrees C, probably the high endothelial venules. DC may thus express "homing receptors," similar to those of T cells, for certain endothelia. We propose that T cells can modify the vascular endothelium in certain areas to allow egress of DC from the bloodstream.

Full Text

The Full Text of this article is available as a PDF (577.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breel M., Mebius R. E., Kraal G. Dendritic cells of the mouse recognized by two monoclonal antibodies. Eur J Immunol. 1987 Nov;17(11):1555–1559. doi: 10.1002/eji.1830171105. [DOI] [PubMed] [Google Scholar]
  2. Brenan M., Parish C. R. Intracellular fluorescent labelling of cells for analysis of lymphocyte migration. J Immunol Methods. 1984 Nov 16;74(1):31–38. doi: 10.1016/0022-1759(84)90364-8. [DOI] [PubMed] [Google Scholar]
  3. Butcher E. C. The regulation of lymphocyte traffic. Curr Top Microbiol Immunol. 1986;128:85–122. doi: 10.1007/978-3-642-71272-2_3. [DOI] [PubMed] [Google Scholar]
  4. Kupiec-Weglinski J. W., Austyn J. M., Morris P. J. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J Exp Med. 1988 Feb 1;167(2):632–645. doi: 10.1084/jem.167.2.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Peugh W. N., Austyn J. M., Carter N. P., Wood K. J., Morris P. J. Inability of dendritic cells to prevent the blood transfusion effect in a mouse cardiac allograft model. Transplantation. 1987 Nov;44(5):706–711. doi: 10.1097/00007890-198711000-00021. [DOI] [PubMed] [Google Scholar]
  6. Smith K. G., Austyn J. M., Hariri G., Beverley P. C., Morris P. J. T cell activation by anti-T3 antibodies: comparison of IgG1 and IgG2b switch variants and direct evidence for accessory function of macrophage Fc receptors. Eur J Immunol. 1986 May;16(5):478–486. doi: 10.1002/eji.1830160503. [DOI] [PubMed] [Google Scholar]
  7. Steinman R. M., Nogueira N., Witmer M. D., Tydings J. D., Mellman I. S. Lymphokine enhances the expression and synthesis of Ia antigens on cultured mouse peritoneal macrophages. J Exp Med. 1980 Nov 1;152(5):1248–1261. doi: 10.1084/jem.152.5.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Witmer M. D., Steinman R. M. The anatomy of peripheral lymphoid organs with emphasis on accessory cells: light-microscopic immunocytochemical studies of mouse spleen, lymph node, and Peyer's patch. Am J Anat. 1984 Jul;170(3):465–481. doi: 10.1002/aja.1001700318. [DOI] [PubMed] [Google Scholar]