Domains of Virus Glycoproteins (original) (raw)

Abstract

This chapter reviews current information about the structure and function of virus glycoproteins. There are few virus glycoproteins that provide prototypes for illustrating important relationships between the functions and glycoprotein structure. The discussion presented in the chapter concentrates on those viral glycoproteins that (1) span the lipid bilayer once, (2) are oriented such that the carboxy terminus comprises the cytoplasmic domain, and (3) contain asparagine-linked oligosaccharides. There are also viral glycoproteins with extensive O-linked glycosylation, some of which are also presented in the discussion. The chapter also focuses on the studies involving directed mutagenesis and construction of chimeric proteins. The effects of altering specific amino acid sequences, of swapping domains, and of adding a new domain to a protein serve to define the functions of a domain and to show that a domain can be independently associated with a specific function. The experiments described have been carried out by inserting the genes of particular viral glycoproteins—such as cDNAs—into expression vectors and transcribing the cDNAs from the promoter provided by the expression vector. This approach established that localization and functions such as the fusogenic activity are properties of the viral glycoprotein per se and do not require other viral-coded components.

References

  1. Adams G.A., Rose J.K. Incorporation of a charged amino acid into the membrane-spanning domain blocks cell surface transport but not membrane anchoring of a viral glycoprotein. Mol. Cell. Biol. 1985;5:1442–1448. doi: 10.1128/mcb.5.6.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams G.A., Rose J.K. Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell. 1985;41:1007–1015. doi: 10.1016/s0092-8674(85)80081-7. [DOI] [PubMed] [Google Scholar]
  3. Air G.M., Laver W.G. The molecular basis of antigenic variation in influenza virus. Adv. Virus Res. 1986 doi: 10.1016/s0065-3527(08)60262-6. in press. [DOI] [PubMed] [Google Scholar]
  4. Amanuma H., Katori A., Obata M., Sagata N., Ikawa Y. Complete nucleotide sequence of the gene for the specific glycoprotein (gp55) of the Friend spleen focus-forming virus. Proc. Natl. Acad. Sci. U.S.A. 1983;80:3913–3917. doi: 10.1073/pnas.80.13.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anilionis A., Wunner W.H., Curtis P.J. Structure of the glycoprotein gene in rabies virus. Nature (London. 1981;294:275–277. doi: 10.1038/294275a0. [DOI] [PubMed] [Google Scholar]
  6. Bachi T., Gerhard W., Yewdell J.W. Monoclonal antibodies detect different forms of influenza virus hemagglutinin during viral penetration and biosynthesis. J. Virol. 1985;55:307–313. doi: 10.1128/jvi.55.2.307-313.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bauke R.B., Spear P.G. Membrane proteins specified by herpes simplex viruses. V. Identification of an Fc-binding glycoprotein. J. Virol. 1979;32:779–789. doi: 10.1128/jvi.32.3.779-789.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bell J.R., Kinney R.M., Trent D.W., Strauss E.C., Strauss J.H. The N-terminus of PE2 in Sindbis virus-infected cells. Virology. 1982;119:255–267. doi: 10.1016/0042-6822(82)90086-1. [DOI] [PubMed] [Google Scholar]
  9. Berger M., Schmidt M.F.G. Protein fatty acyltransferase is located in the rough endoplasmic reticulum. FEBS Lett. 1985;187:289–294. doi: 10.1016/0014-5793(85)81261-8. [DOI] [PubMed] [Google Scholar]
  10. Blok J., Air G.M. Variation in the membrane insertion and “stalk” sequences in eight subtypes of influenza type A virus neuraminidase. Biochemistry. 1982;21:4001–4007. doi: 10.1021/bi00260a015. [DOI] [PubMed] [Google Scholar]
  11. Blok J., Air G.M., Laver W.G., Ward C.W., Lilly G.G., Woods E.F., Roxburgh C.M., Inglis A.S. Studies on the size, chemical composition and partial sequence of the neuraminidase (NA) from type A influenza viruses show that the N-terminal regions of the NA is not processed and serves to anchor the NA in the viral membrane. Virology. 1982;119:109–121. doi: 10.1016/0042-6822(82)90069-1. [DOI] [PubMed] [Google Scholar]
  12. Blumberg B., Giogri C., Roux L., Raju R., Dowling P., Chollet A., Kolakofsky D. Sequence determination of the Sendai virus HN gene and its comparison to the influenza virus glycoproteins. Cell. 1985;41:269–278. doi: 10.1016/0092-8674(85)90080-7. [DOI] [PubMed] [Google Scholar]
  13. Boere W.A.M., Harmsen T., Vinje J., Benaissa-Troun B.J., Kraaijeveld C.A., Snippe H. Identification of distinct antigenic determinants on Semliki Forest virus by using monoclonal antibodies with different antiviral activities. J. Virol. 1984;52:575–582. doi: 10.1128/jvi.52.2.575-582.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bova C.A., Manfredi J.P., Swanstrom R. Env genes of avian retroviruses: Nucleotide sequence and molecular recombinants define host range determinants. Virology. 1986;152:343–354. doi: 10.1016/0042-6822(86)90137-6. [DOI] [PubMed] [Google Scholar]
  15. Burgert H.-G., Kvist S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell. 1985;41:987–997. doi: 10.1016/s0092-8674(85)80079-9. [DOI] [PubMed] [Google Scholar]
  16. Burke B., Walter C., Griffiths G., Warren G. Viral glycoproteins at different stages of intracellular transport can be distinguished using monoclonal antibodies. Eur. J. Cell Biol. 1983;31:315–324. [PubMed] [Google Scholar]
  17. Burke B., Matlin K., Bause E., Legler G., Peyrieras N., Ploegh H. Inhibition of N-linked oligosaccharide trimming does not interfere with surface expression of certain integral membrane proteins. EMBO J. 1984;3:551–556. doi: 10.1002/j.1460-2075.1984.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bzik D.J., Fox B.A., De Luca N.A., Person S. Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: Mutations affecting rate of virus entry and cell fusion. Virology. 1984;137:185–190. doi: 10.1016/0042-6822(84)90022-9. [DOI] [PubMed] [Google Scholar]
  19. Chanas A.C., Gould E.A., Clegg J.C.S., Varma M.G.R. Monoclonal antibodies to Sindbis virus glycoprotein E1 can neutralize, enhance infectivity, and independently inhibit haemagglutination of haemolysis. J. Gen. Virol. 1982;58:37–46. doi: 10.1099/0022-1317-58-1-37. [DOI] [PubMed] [Google Scholar]
  20. Chatis P.A., Morrison T.G. Vesicular stomatitis virus glycoprotein is anchored to intracellular membranes near its carboxyl end and is proteolytically cleaved at its amino terminus. J. Virol. 1979;29:957–963. doi: 10.1128/jvi.29.3.957-963.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chatis P.A., Morrison T.G. Mutational changes in the vesicular stomatitis virus glycoprotein affect the requirement of carbohydrate in morphogenesis. J. Virol. 1981;37:307–316. doi: 10.1128/jvi.37.1.307-316.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Cianciolo G.J., Kipnis R.J., Snyderman R. Similarity between p15E of murine and feline leukemia viruses and p21 of HTLV. Nature (London) 1984;311:515. doi: 10.1038/311515a0. [DOI] [PubMed] [Google Scholar]
  23. Cianciolo G.J., Copeland T.D., Oroszlan S., Snyderman R. Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science. 1985;230:453–455. doi: 10.1126/science.2996136. [DOI] [PubMed] [Google Scholar]
  24. Clark S.P., Mak T.W. Complete nucleotide sequence of an infectious clone of Friend spleen focus-forming provirus: gp55 is an envelope fusion glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 1983;80:5037–5041. doi: 10.1073/pnas.80.16.5037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Clegg J.C.S., Chanas A.C., Gould E.A. Conformational changes in Sindbis virus E1 glycoprotein induced by monoclonal antibody binding. J. Gen. Virol. 1983;64:1121–1126. doi: 10.1099/0022-1317-64-5-1121. [DOI] [PubMed] [Google Scholar]
  26. Cloyd M.W., Hartley J.W., Rowe W.P. Cell-surface antigens associated with recombinant mink cell focus-inducing murine leukemia viruses. J. Exp. Med. 1979;149:702–712. doi: 10.1084/jem.149.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Coffin J.M., Champion M., Chabot J.M. Nucleotide sequence relationships between the genomes of an endogenous and exogenous avian tumor virus. J. Virol. 1978;28:972–991. doi: 10.1128/jvi.28.3.972-991.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Collins P.L., Huang Y.T., Wertz G.W. Nucleotide sequence of the gene encoding the fusion (f) glycoprotein of human respiratory syncytial virus. Proc. Natl. Acad. Sci. U.S.A. 1984;81:7683–7687. doi: 10.1073/pnas.81.24.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Colman P.M., Varghese J.N., Laver W.G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature (London) 1983;303:41–44. doi: 10.1038/303041a0. [DOI] [PubMed] [Google Scholar]
  30. Crecelius D.M., Deom C.M., Schulze I.T. Biological properties of a hemagglutinin mutant of influenza virus selected by host cells. Virology. 1984;139:164–177. doi: 10.1016/0042-6822(84)90337-4. [DOI] [PubMed] [Google Scholar]
  31. Crimmins D.L., Mehard W.B., Schlesinger S. Physical properties of a soluble form of the glycoprotein of vesicular stomatitis virus at neutral and acidic pH. Biochemistry. 1983;22:5790–5796. doi: 10.1021/bi00294a017. [DOI] [PubMed] [Google Scholar]
  32. Cutler D.F., Garoff H. Mutants of the membrane-binding region of Semliki Forest virus. I. Cell surface transport and fusogenic activity. J. Cell Biol. 1986;102:889–901. doi: 10.1083/jcb.102.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cutler D.F., Melancon P., Garoff H. Mutants of the membrane-binding region of Semliki Forest virus E2 protein. II. Topology and membrane binding. J. Cell Biol. 1986;102:902–910. doi: 10.1083/jcb.102.3.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Daniels R.S., Downie J.C., Hay A.J., Knossow M., Skehel J.J., Wang M.L., Wiley D.C. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell. 1985;40:431–439. doi: 10.1016/0092-8674(85)90157-6. [DOI] [PubMed] [Google Scholar]
  35. Deom C.M., Caton A.J., Schulze I.T. Removal of a complex oligosaccharide from the tip of an influenza A virus hemagglutinin potentiates host cell-mediated virus selection. Proc. Natl. Acad. Sci. U.S.A. 1986;83:3771–3775. doi: 10.1073/pnas.83.11.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Dickson C., Eisenman R., Fan H., Hunter E., Teich N. Protein biosynthesis and assembly. In: Weiss R., Teich N., Varmus H., Coffin J., editors. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. pp. 513–648. (‘RNA Tumor Viruses’). [Google Scholar]
  37. Dorner A.J., Stoye J.P., Coffin J.M. Molecular basis of host range variation in avian retroviruses. J. Virol. 1985;53:32–39. doi: 10.1128/jvi.53.1.32-39.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Doyle C., Roth M.G., Sambrook J., Gething M-J. Mutations in the cytoplasmic domain of the influenza virus hemagglutinin affect different stages of intracellular transport. J. Cell Biol. 1985;100:704–714. doi: 10.1083/jcb.100.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Dubovi E.J., Wagner R.R. Spatial relationships of the proteins of vesicular stomatitis virus: Induction of reversible oligomers by cleavable protein cross-linkers and oxidation. J. Virol. 1977;22:500–509. doi: 10.1128/jvi.22.2.500-509.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Edwards J., Mann E., Brown D.T. Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH. J. Virol. 1983;45:1090–1097. doi: 10.1128/jvi.45.3.1090-1097.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Etchison J.R., Holland J.J. Carbohydrate composition of the membrane glycoprotein of vesicular stomatitis virus grown in four mammalian cell lines. Proc. Natl. Acad. Sci. U.S.A. 1974;71:4011–4014. doi: 10.1073/pnas.71.10.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Florkiewicz R.Z., Rose J.K. A cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH. Science. 1984;225:721–723. doi: 10.1126/science.6087454. [DOI] [PubMed] [Google Scholar]
  43. Friedman H.M., Cohen G.H., Eisenberg R.J., Seidel C.A., Cines D.B. Glycoprotein C of HSV-1 acts as a receptor for the C3b complement component on infected cells. Nature (London) 1984;309:633–635. doi: 10.1038/309633a0. [DOI] [PubMed] [Google Scholar]
  44. Gallione C.J., Rose J.K. Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. J. Virol. 1983;46:162–169. doi: 10.1128/jvi.46.1.162-169.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Gallione C.J., Rose J.K. A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. J. Virol. 1985;54:374–382. doi: 10.1128/jvi.54.2.374-382.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Garoff H., Kondor-Koch C., Pettersson R., Burke B. Expression of Semliki Forest virus proteins from cloned complementary DNA. II. The membrane-spanning glycoprotein E2 is transported to the cell surface without its normal cytoplasmic domain. J. Cell Biol. 1983;97:652–658. doi: 10.1083/jcb.97.3.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Gething M.-J., Sambrook J. Cell-surface expression of influenza haemagglutinin from a cloned DNA copy of the RNA gene. Nature (London) 1981;293:620–625. doi: 10.1038/293620a0. [DOI] [PubMed] [Google Scholar]
  48. Gething M.-J., Sambrook J. Construction of influenza haemagglutinin genes that code for intracellular and secreted forms of the protein. Nature (London) 1982;300:598–603. doi: 10.1038/300598a0. [DOI] [PubMed] [Google Scholar]
  49. Gething M.-J., Bye J., Skehel J.J., Waterfield M.D. Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus. Nature (London) 1980;287:301–306. doi: 10.1038/287301a0. [DOI] [PubMed] [Google Scholar]
  50. Gething M.-J., Doms R.W., York D., White J. Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the hemagglutinin of influenza virus. J. Cell Biol. 1986;102:11–23. doi: 10.1083/jcb.102.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Gibson R., Leavitt R., Kornfeld S., Schlesinger S. Synthesis and infectivity of vesicular stomatitis virus containing nonglycosylated G protein. Cell. 1978;13:671–679. doi: 10.1016/0092-8674(78)90217-9. [DOI] [PubMed] [Google Scholar]
  52. Gibson R., Schlesinger S., Kornfeld S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 1979;254:3600–3607. [PubMed] [Google Scholar]
  53. Gibson R., Kornfeld S., Schlesinger S. A role for oligosaccharides in glycoprotein biosynthesis. Trends Biochem. Sci. 1980;5:290–293. [Google Scholar]
  54. Gibson R., Kornfeld S., Schlesinger S. The effect of oligosaccharide chains of different sizes on the maturation and physical properties of the G protein of vesicular stomatitis virus. J. Biol. Chem. 1981;256:456–462. [PubMed] [Google Scholar]
  55. Gross V., Andus T., Tran-Thi T.-A., Schwarz R.T., Decker K., Heinrich P.C. 1-Deoxynojirimycin impairs oligosaccharide processing of 1-proteinase inhibitor and inhibits its secretion in primary cultures of rat hepatocytes. J. Biol. Chem. 1983;258:12203–12209. [PubMed] [Google Scholar]
  56. Guan J.-L., Rose J.K. Conversion of a secretory protein into a transmembrane protein results in its transport to the Golgi complex but not to the cell surface. Cell. 1984;37:779–787. doi: 10.1016/0092-8674(84)90413-6. [DOI] [PubMed] [Google Scholar]
  57. Guan J.-L., Machamer C.E., Rose J.K. Glycosylation allows cell-surface transport of an anchored secretory protein. Cell. 1985;42:489–496. doi: 10.1016/0092-8674(85)90106-0. [DOI] [PubMed] [Google Scholar]
  58. Harrison S.C. Alphavirus structure. In: Schlesinger S., Schlesinger M.J., editors. Plenum; New York: 1986. pp. 21–34. (‘The Togaviridae and Flaviviridae’). [Google Scholar]
  59. Hashimoto K., Erdel S., Deranen S., Saraste J., Kaariainen L. Evidence for a separate signal sequence for the carboxy-terminal protein E1 of Semliki Forest virus. J. Virol. 1981;38:34–40. doi: 10.1128/jvi.38.1.34-40.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Hayward W.S. Size and genetic content of viral RNAs in avian oncovirus-infected cells. J. Virol. 1977;24:47–63. doi: 10.1128/jvi.24.1.47-63.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hiebert S.W., Paterson R.G., Lamb R.A. Hemagglutinin–neuraminidase protein of the paramyxovirus Simian virus 5: Nucleotide sequence of the mRNA predicts an N-terminal membrane anchor. J. Virol. 1985;54:1–6. doi: 10.1128/jvi.54.1.1-6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Higa H.H., Rogers G.N., Paulson J.C. Influenza virus hemagglutinins differentiate between receptor determinants bearingN-acetyl,N-glycollylN,O-diacetylneuraminic acids. Virology. 1985;144:279–282. doi: 10.1016/0042-6822(85)90325-3. [DOI] [PubMed] [Google Scholar]
  63. Homa F.L., Purifoy D.J.M., Glorioso J.C., Levine M. Molecular basis of the glycoprotein C-negative phenotypes of herpes simplex virus type 1 mutants selected with a virus-neutralizing monoclonal antibody. J. Virol. 1986;58:281–289. doi: 10.1128/jvi.58.2.281-289.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Huang R.T.C., Rott R., Wahn K., Klenk H.-D., Kohama T. The function of neuraminidase in membrane fusion induced by myxoviruses. Virology. 1980;107:313–319. doi: 10.1016/0042-6822(80)90299-8. [DOI] [PubMed] [Google Scholar]
  65. Hughes S. Sequence of the long terminal repeat and adjacent segments of the endogenous avian virus Rous associated virus. J. Virol. 1982;43:191–200. doi: 10.1128/jvi.43.1.191-200.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hunter E., Hill E., Hardwick M., Brown A., Schwartz D.E., Tizard R. Complete sequence of the Rous sarcoma virusenv gene: Identification of structural and functional regions of its product. J. Virol. 1983;46:920–936. doi: 10.1128/jvi.46.3.920-936.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Johnson D.C., Schlesinger M.J. Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  68. Johnson D.C., Schlesinger M.J., Elson E.L. Fluorescence photobleaching recovery measurements reveal differences in envelopment of Sindbis and vesicular stomatitis viruses. Cell. 1981;23:423–431. doi: 10.1016/0092-8674(81)90137-9. [DOI] [PubMed] [Google Scholar]
  69. Joho R.H., Billeter M.A., Weissman C. Mapping of biological functions on RNA of avian tumor viruses: Location of regions required for transformation and determination of host range. Proc. Natl. Acad. Sci. U.S.A. 1975;72:4772–4776. doi: 10.1073/pnas.72.12.4772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kääriäinen K., Hashimoto K., Saraste J., Virtanen I., Penttinen K. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. J. Cell Biol. 1980;87:783–791. doi: 10.1083/jcb.87.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Kang C.Y., Prevec L. Proteins of vesicular stomatitis virus. II. Immunological comparisons of viral antigens. J. Virol. 1970;6:20–27. doi: 10.1128/jvi.6.1.20-27.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Katz F.N., Rothman J.E., Lingappa V.R., Blobel G., Lodish H.F. Membrane assemblyin vitro: Synthesis, glycosylation, and asymmetric insertion of a transmembrane protein. Proc. Natl. Acad. Sci. U.S.A. 1977;74:3278–3282. doi: 10.1073/pnas.74.8.3278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Kawaoka Y., Naeve C., Webster R.G. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology. 1984;139:303–316. doi: 10.1016/0042-6822(84)90376-3. [DOI] [PubMed] [Google Scholar]
  74. Kielian M.C., Helenius A. PH-induced alterations in the fusogenic spike protein of Semliki Forest virus. J. Cell Biol. 1985;101:2284–2291. doi: 10.1083/jcb.101.6.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Kielian M.C., Keranen S., Kääriäinen L., Helenius A. Membrane fusion mutants of Semliki Forest virus. J. Cell Biol. 1984;98:139–145. doi: 10.1083/jcb.98.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Klenk H.-D., Rott R., Orlich M., Blodom J. Activation of influenza viruses by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
  77. Kondor-Koch C., Burke B., Garoff H. Expression of Semliki Forest virus proteins from clonal complementary DNA. I. The fusion activity of the spike glycoprotein. J. Cell Biol. 1983;97:644–651. doi: 10.1083/jcb.97.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  79. Kotwal G.J., Gosh H.P. Role of fatty acid acylation of membrane glycoproteins—absence of palmitic acid in glycoproteins of two serotypes of vesicular stomatitis virus. J. Biol. Chem. 1984;259:4699–4701. [PubMed] [Google Scholar]
  80. Kries T.E., Lodish H.F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell. 1986;46:929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  82. Lazarowitz S.G., Choppin P.W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavages of the hemagglutinin polypeptide. Virology. 1975;68:440–454. doi: 10.1016/0042-6822(75)90285-8. [DOI] [PubMed] [Google Scholar]
  83. Leamnson R.N., Halpern M.S. Subunit structure of the glycoprotein complex of avian tumor virus. J. Virol. 1976;18:956–968. doi: 10.1128/jvi.18.3.956-968.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Lentz M.R., Air G.M. Loss of enzyme activity in a site-directed mutant of influenza neuraminidase compared to expressed wild-type protein. Virology. 1986;148:74–83. doi: 10.1016/0042-6822(86)90404-6. [DOI] [PubMed] [Google Scholar]
  85. Lentz T.L. Rabies virus receptors. Trends Neurol. Sci. 1985;8:360–364. [Google Scholar]
  86. Lentz T.L., Burrage T.G., Smith A.L., Crick J., Tignor G.H. Is the acetylcholine receptor a rabies virus receptor? Science. 1982;215:182–184. doi: 10.1126/science.7053569. [DOI] [PubMed] [Google Scholar]
  87. Lentz T.L., Hawrot E., Speicher D.W. Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science. 1984;226:847–848. doi: 10.1126/science.6494916. [DOI] [PubMed] [Google Scholar]
  88. Li J.-P., Bestwick R.K., Machida C., Kabat D. Role of a membrane glycoprotein in Friend virus erythroleukemia: Nucleotide sequences of non-leukemogenic mutant and spontaneous revertant viruses. J. Virol. 1986;57:534–538. doi: 10.1128/jvi.57.2.534-538.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Little S.P., Huang A.S. Shedding of the glycoprotein from vesicular stomatitis virus-infected cells. J. Virol. 1978;27:330–339. doi: 10.1128/jvi.27.2.330-339.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Machamer C.E., Florkiewicz R.Z., Rose J.K. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Mol. Cell. Biol. 1985;5:3074–3083. doi: 10.1128/mcb.5.11.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Machida C.A., Bestwick R.K., Boswell B.A., Kabat D. Role of a membrane glycoprotein in Friend virus-induced erythroleukemia: Studies of mutant and revertant viruses. Virology. 1985;144:158–172. doi: 10.1016/0042-6822(85)90314-9. [DOI] [PubMed] [Google Scholar]
  92. McQueen N.L., Nayak D.P., Jones L.V., Compans R.W. Chimeric influenza virus hemagglutinin containing either the NH2 terminus or the COOH terminus of G protein of vesicular stomatitus virus is defective in transport to the cell surface. Proc. Natl. Acad. Sci. U.S.A. 1984;81:395–399. doi: 10.1073/pnas.81.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. McQueen N.L., Nayak D.P., Stephens E.B., Compans R.W. Polarized expression of a chimeric protein in which the transmembrane and cytoplasmic domains of the influenza virus hemagglutinin have been replaced by those of the vesicular stomatitis virus G protein. Proc. Natl. Acad. Sci. U.S.A. 1986 doi: 10.1073/pnas.83.24.9318. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Magee A.I., Royama A.H., Malfer C., Wen D., Schlesinger M.J. Release of fatty acids from virus glycoproteins by hydroxylamine. Biochim. Biophys. Acta. 1983;798:156–166. doi: 10.1016/0304-4165(84)90298-8. [DOI] [PubMed] [Google Scholar]
  95. Mann E., Edwards J., Brown D.T. Polycaryocyte formation mediated by Sindbis virus glycoproteins. J. Virol. 1983;45:1083–1089. doi: 10.1128/jvi.45.3.1083-1089.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Markoff L., Lin B.-C., Sveda M.M., Lai C-J. Glycosylation and surface expression of the influenza virus neuraminidase requires the N-terminal hydrophobic region. Mol. Cell. Biol. 1984;4:8–16. doi: 10.1128/mcb.4.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Marshall R.D. Glycoproteins. Annu. Rev. Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. [DOI] [PubMed] [Google Scholar]
  98. Marshall R.D. The nature and metabolism of the carbohydrate–peptide linkages of glycoproteins. Biochem. Soc. Symp. 1974;40:17–26. [PubMed] [Google Scholar]
  99. Melancon P., Garoff H. Reinitiation of translocation in the Semliki Forest virus structural polyprotein: Identification of the signal for E1 glycoprotein. EMBO J. 1986;5:155–156. doi: 10.1002/j.1460-2075.1986.tb04396.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Mellon P., Duesberg P.H. Subgenomic, cellular Rous sarcoma virus RNAs contain oligonucleotides from the 3′ half and the 5′ terminus of virion RNA. Nature (London) 1977;270:631–634. doi: 10.1038/270631a0. [DOI] [PubMed] [Google Scholar]
  101. Mooney J.J., Dalrymple J.M., Alving C.R., Russell P.K. Interaction of Sindbis virus with liposomal model membranes. J. Virol. 1975;15:225–231. doi: 10.1128/jvi.15.2.225-231.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Morrison T., Ward L.J., Semerjian A. Intracellular processing of the Newcastle disease virus fusion glycoprotein. J. Virol. 1985;53:851–857. doi: 10.1128/jvi.53.3.851-857.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Mudd J.A., Swanson R.E. In situ cross-linking of vesicular stomatitus virus proteins with reversible agents. Virology. 1978;88:263–280. doi: 10.1016/0042-6822(78)90284-2. [DOI] [PubMed] [Google Scholar]
  104. Nesterowicz A., Laver G., Jackson D.C. Antigenic determinants of influenza virus hemagglutinin. X. A comparison of the physical and antigenic properties of monomeric and trimeric forms. J. Gen. Virol. 1985;66:1687–1695. doi: 10.1099/0022-1317-66-8-1687. [DOI] [PubMed] [Google Scholar]
  105. Olmsted R.A., Baric R.S., Sawyer B.A., Johnston R.E. Sindbis virus mutants selected for rapid growth in cell culture display attenuated virulence in animals. Science. 1984;225:424–426. doi: 10.1126/science.6204381. [DOI] [PubMed] [Google Scholar]
  106. Palese P., Kingsbury D.W. ‘Genetics of Influenza Viruses.’. Springer-Verlag; Berlin and New York: 1983. [Google Scholar]
  107. Pan Y.T., Hori H., Saul T., Sanford B.A., Molyneux R.J., Elbein A.D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry. 1983;22:3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
  108. Para M.F., Goldstein L., Spear P.G. Similarities and differences in the Fc-binding glycoprotein (gE) of herpes simplex virus types 1 and 2 and tentative mapping of the viral gene for this glycoprotein. J. Virol. 1982;41:137–144. doi: 10.1128/jvi.41.1.137-144.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Peyrieras N., Bause E., Legler G., Vasilov R., Claesson L., Peterson P., Ploegh H. Effects of the glucosidase inhibitors nojirimycin and deoxynojirimycin on the biosynthesis of membrane and secreted proteins. EMBO J. 1983;2:823–832. doi: 10.1002/j.1460-2075.1983.tb01509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Pinter A., Honnen W.J. The mature form of the Friend spleen focus-forming virus envelope protein, gp65, is efficiently secreted from cells. Virology. 1985;143:646–650. doi: 10.1016/0042-6822(85)90406-4. [DOI] [PubMed] [Google Scholar]
  111. Poruchynsky M.S., Tyndall C., Both G.W., Sato F., Bellamy A.R., Atkinson P.H. Deletions into an NH2-terminal hydrophobic domain result in secretion of rotavirus vp7, a resident endoplasmic reticulum membrane glycoprotein. J. Cell Biol. 1985;101:2199–2209. doi: 10.1083/jcb.101.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Reading C.L., Penhoet E.E., Ballou C.E. Carbohydrate structure of vesicular stomatitis virus glycoprotein. J. Biol. Chem. 1978;253:5600–5612. [PubMed] [Google Scholar]
  113. Rice C.M., Strauss J.H. Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins. Proc. Natl. Acad. Sci. U.S.A. 1981;78:2062–2066. doi: 10.1073/pnas.78.4.2062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Rice C.M., Strauss J.H. Association of Sindbis virion glycoproteins and their precursors. J. Mol. Biol. 1982;154:325–348. doi: 10.1016/0022-2836(82)90067-5. [DOI] [PubMed] [Google Scholar]
  115. Riedel H. Different membrane anchors allow the Semliki Forest virus spike subunit E2 to reach the cell surface. J. Virol. 1985;54:224–228. doi: 10.1128/jvi.54.1.224-228.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Riedel H., Konder-Koch C., Garoff H. Cell surface expression of fusogenic vesicular stomatitis virus G protein from cloned DNA. EMBO J. 1984;3:1477–1483. doi: 10.1002/j.1460-2075.1984.tb01999.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Robertson J.S., Naeve C.W., Webster R.G., Bootman J.S., Newman R., Schild G.C. Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology. 1985;143:166–174. doi: 10.1016/0042-6822(85)90105-9. [DOI] [PubMed] [Google Scholar]
  118. Rodriguez-Boulan E.J., Sabatini D.D. Asymmetric budding of viruses in epithelial monolayers: A model system for the study of epithelial cell polarity. Proc. Natl. Acad. Sci. U.S.A. 1978;75:5071–5075. doi: 10.1073/pnas.75.10.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Roehrig J.T. The use of monoclonal antibodies in studies of the structural proteins of togaviruses and flaviviruses. In: Schlesinger S., Schlesinger M.J., editors. Plenum; New York: 1986. pp. 251–278. (‘The Togaviridae and Flaviviridae’). [Google Scholar]
  120. Roehrig J.T., Gorski D., Schlesinger M.J. Properties of monoclonal antibodies directed against the glycoproteins of Sindbis virus. J. Gen. Virol. 1982;59:421–425. doi: 10.1099/0022-1317-59-2-421. [DOI] [PubMed] [Google Scholar]
  121. Rose J.K., Bergmann J.E. Expression from cloned cDNA of cell-surface secreted forms of the glycoprotein of vesicular stomatitis virus in eucaryotic cells. Cell. 1982;30:753–762. doi: 10.1016/0092-8674(82)90280-x. [DOI] [PubMed] [Google Scholar]
  122. Rose J.K., Bergmann J.E. Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein. Cell. 1983;34:513–524. doi: 10.1016/0092-8674(83)90384-7. [DOI] [PubMed] [Google Scholar]
  123. Rose J.K., Gallione C.J. Nucleotide sequences of the mRNA's encoding the vesicular stomatitis virus G and M proteins determined from the cDNA clones containing the complete coding regions. J. Virol. 1981;39:519–528. doi: 10.1128/jvi.39.2.519-528.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Rose J.K., Welch W.J., Sefton B.M., Esch F.S., Lund N.C. Vesicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH terminus. Proc. Natl. Acad. Sci. U.S.A. 1980;77:3884–3888. doi: 10.1073/pnas.77.7.3884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Rose J.K., Doolittle R.F., Anilionis A., Curtis P.J., Wunner W.H. Homology between the glycoproteins of vesicular stomatitis virus and rabies virus. J. Virol. 1982;43:361–364. doi: 10.1128/jvi.43.1.361-364.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Rose J.K., Adams G.A., Gallione C.J. The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition. Proc. Natl. Acad. Sci. U.S.A. 1984;81:2050–2054. doi: 10.1073/pnas.81.7.2050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Roth M.G., Srinivas R.V., Compans R.W. Basolateral maturation of retroviruses in polarized epithelial cells. J. Virol. 1983;45:1065–1073. doi: 10.1128/jvi.45.3.1065-1073.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Rott R., Orlich M., Klenk H.-D., Wang M.L., Skehel J.J., Wiley D.C. Studies on the adaptation of influenza viruses to MDCK cells. EMBO J. 1984;3:3329–3332. doi: 10.1002/j.1460-2075.1984.tb02299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Rottier P.J.M., Welling G.W., Welling-Wester S., Niesters H.G.M., Lenstra J.A., Van der Zdeijst B.A.M. Predicted membrane topology of the coronavirus protein E1. Biochemistry. 1986;25:1335–1339. doi: 10.1021/bi00354a022. [DOI] [PubMed] [Google Scholar]
  130. Ruscetti S., Wolff L. Spleen focus-forming virus: Relationship of an altered envelope gene to the development of a rapid erythroleukemia. Curr. Top. Microbiol. Immunol. 1984;112:21–44. doi: 10.1007/978-3-642-69677-0_2. [DOI] [PubMed] [Google Scholar]
  131. Sambrook J., White L., Rogers J., Gething M-J. Lines of BPV-transformed murine cells that constitutively express influenza virus hemagglutinin. EMBO J. 1985;4:91–103. doi: 10.1002/j.1460-2075.1985.tb02322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Saul R., Chambers J.P., Molyneux R.J., Elbein A.D. Castanospermine, a tetrahydroxylated alkaloid that inhibits β-glucosidase and β-glucocerebrosidase. Arch. Biochem. Biophys. 1983;221:593–597. doi: 10.1016/0003-9861(83)90181-9. [DOI] [PubMed] [Google Scholar]
  133. Saunier B., Kilker R.D., Tkacz J.S., Quaroni A., Herscovics A. Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J. Biol. Chem. 1982;257:14155–14161. [PubMed] [Google Scholar]
  134. Schlegel R., Wade M. A synthetic peptide corresponding to the NH2 terminus of vesicular stomatitis virus glycoprotein is a pH-dependent hemolysin. J. Biol. Chem. 1984;259:4691–4694. [PubMed] [Google Scholar]
  135. Schlegel R., Wade M. Biologically active peptides of the vesicular stomatitis virus glycoprotein. J. Virol. 1985;53:319–323. doi: 10.1128/jvi.53.1.319-323.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Schlegel R., Tralka T.S., Willingham M.C., Pastan I. Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV-binding site? Cell. 1983;32:639–646. doi: 10.1016/0092-8674(83)90483-x. [DOI] [PubMed] [Google Scholar]
  137. Schlesinger M.J. Fatty acylation of eucaryotic cell and virus membrane proteins. In: Leive L., editor. American Society for Microbiology; Washington, D.C: 1985. pp. 316–321. (‘Microbiology—1985’). [Google Scholar]
  138. Schlesinger M.J., Malfer C. Cerulenin blocks fatty acid acylation of glycoproteins and inhibits vesicular stomatitis and Sindbis virus particle formation. J. Biol. Chem. 1982;257:9887–9890. [PubMed] [Google Scholar]
  139. Schlesinger M.J., Schlesinger S. Formation and assembly of alphavirus glycoproteins. In: Schlesinger S., Schlesinger M.J., editors. Plenum; New York: 1986. pp. 121–148. (‘The Togaviridae and Flaviviridae’). [Google Scholar]
  140. Schlesinger S., Malfer C., Schlesinger M.J. The formation of vesicular stomatitis virus (San Juan strain) becomes temperature-sensitive when glucose residues are retained on the oligosaccharides of the glycoprotein. J. Biol. Chem. 1984;259:7597–7601. [PubMed] [Google Scholar]
  141. Schmaljohn A.L., Kokubun K.M., Cole G.A. Protective monoclonal antibodies define maturational and pH-dependent antigenic changes in Sindbis virus E1 glycoprotein. Virology. 1983;130:144–154. doi: 10.1016/0042-6822(83)90124-1. [DOI] [PubMed] [Google Scholar]
  142. Schmidt M.F.G. Acylation of viral spike glycoproteins: A feature of envelope RNA viruses. Virology. 1982;116:327–338. doi: 10.1016/0042-6822(82)90424-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Schmidt M.F.G., Lambrecht B. On the structure of the acyl linkage and the function of fatty acyl chains in the influenza virus haemagglutinin and the glycoproteins of Semliki Forest virus. J. Gen. Virol. 1985;66:2635–2647. doi: 10.1099/0022-1317-66-12-2635. [DOI] [PubMed] [Google Scholar]
  144. Schmidt M.F.G., Schlesinger M.J. Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J. Biol. Chem. 1980;255:3334–3339. [PubMed] [Google Scholar]
  145. Schwartz D.E., Tizard R., Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983;32:853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  146. Simons K., Fuller S.D. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1986;1:243–288. doi: 10.1146/annurev.cb.01.110185.001331. [DOI] [PubMed] [Google Scholar]
  147. Smith M.M., Schlesinger S., Lindstrom J., Merle J.P. The effects of inhibiting oligosaccharide trimming by 1-deoxynojirimycin on the nicotinic acetyl-choline receptor. J. Biol. Chem. 1986;261:14825–14832. [PubMed] [Google Scholar]
  148. Spear P.G. Glycoproteins specified by herpes simplex viruses. In: Roizman B., editor. Vol. 3. Plenum; New York: 1985. pp. 315–356. (‘The Herpes Viruses’). [Google Scholar]
  149. Spear P.G. Virus-induced cell fusion. In: Sowers A.E., editor. Plenum; New York: 1986. (‘Cell Fusion’). in press. [Google Scholar]
  150. Srinivas R.V., Compans R.W. Membrane association and defective transport of spleen focus-forming virus glycoprotein. J. Biol. Chem. 1983;258:14718–14724. [PubMed] [Google Scholar]
  151. Srinivas R.V., Balachandran N., Alonso-Caplen F.V., Compans R.W. Expression of herpes simplex virus glycoproteins in polarized epithelial cells. J. Virol. 1986;58:689–693. doi: 10.1128/jvi.58.2.689-693.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Stanley J., Cooper S.J., Griffin D.E. Alphavirus neurovirulence: Monoclonal antibodies discriminating wild-type from neuroadapted Sindbis virus. J. Virol. 1985;56:110–119. doi: 10.1128/jvi.56.1.110-119.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Steiner D.F., Docherty K., Carroll R. Golgi/granule processing of peptide hormone and neuropeptide precursors: A minireview. J. Cell. Biochem. 1984;24:121–130. doi: 10.1002/jcb.240240204. [DOI] [PubMed] [Google Scholar]
  154. Stephens E.B., Compans R.W. Nonpolarized expression of a secreted murine leukemia virus glycoprotein in polarized epithelial cells. Cell. 1986:47. doi: 10.1016/0092-8674(86)90820-2. in press. [DOI] [PubMed] [Google Scholar]
  155. Strauss E.C., Strauss J.H. Structure and replication of the alphavirus genome. In: Schlesinger S., Schlesinger M.J., editors. Plenum; New York: 1986. pp. 35–90. (‘The Togaviridae and Flaviviridae’). [Google Scholar]
  156. Strauss J.H., Strauss E.G. Chap. 22., Antigenic structure of togaviruses. In: Van Regenmortel M.H.V., Neurath A.R., editors. Elsevier; Amsterdam: 1985. pp. 407–424. (‘Immunochemistry of Viruses’). [Google Scholar]
  157. Struck D.K., Lennarz W.J. The function of saccharide-lipids in synthesis of glycoproteins. In: Lennarz W.J., editor. Plenum; New York: 1980. pp. 35–83. (‘The Biochemistry of Glycoproteins and Proteoglycans’). [Google Scholar]
  158. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:36–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Sveda M.M., Markoff L.J., Lai C-J. Cell surface expression of the influenza virus hemagglutinin requires the hydrophobic carboxy-terminal sequences. Cell. 1982;30:649–656. doi: 10.1016/0092-8674(82)90261-6. [DOI] [PubMed] [Google Scholar]
  160. Sveda M.M., Markoff L.J., Lai C-J. Influenza virus hemagglutinin containing an altered hydrophobic carboxy terminus accumulates intracellularly. J. Virol. 1984;49:223–228. doi: 10.1128/jvi.49.1.223-228.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Symington J., Schlesinger M.J. Isolation of a Sindbis virus variant by passage on mouse plasmacytoma cells. J. Virol. 1975;15:1037–1041. doi: 10.1128/jvi.15.4.1037-1041.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Symington J., Schlesinger M.J. Characterization of a Sindbis virus variant with altered host range. Arch. Virol. 1978;58:127–136. doi: 10.1007/BF01315405. [DOI] [PubMed] [Google Scholar]
  163. Teich N. Taxonomy of retroviruses. In: Weiss R., Teich N., Varmus H., Coffin J., editors. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. pp. 25–207. (‘RNA Tumor Viruses’). [Google Scholar]
  164. Torrisi M.R., Bonatti S. Immunocytochemical study of the partition and distribution of Sindbis virus glycoproteins in freeze-fractured membranes of infected baby hamster kidney cell. J. Cell Biol. 1985;101:1300–1306. doi: 10.1083/jcb.101.4.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Troxler D.H., Lowy D., Howk R., Young H., Scolnick E.M. Friend strain of spleen focus-forming virus is a recombinant between ecotropic murine type C virus and theenv gene region of xenotropic type C virus. Proc. Natl. Acad. Sci. U.S.A. 1977;74:4671–4675. doi: 10.1073/pnas.74.10.4671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Troxler D.H., Boyars J.K., Parks W.P., Scolnick E.M. Friend strain of spleen focus-forming virus: A recombinant between mouse type C ecotropic viral sequences and sequences related to xenotropic virus. J. Virol. 1977;22:361–372. doi: 10.1128/jvi.22.2.361-372.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. VanMeer G., Davoust J., Simons K. Parameters affecting low-pH-mediated fusion of liposomes with the plasma membrane of cells infected with influenza virus. Biochemistry. 1985;24:3593–3602. doi: 10.1021/bi00335a030. [DOI] [PubMed] [Google Scholar]
  168. Varghese J.N., Laver W.G., Colman P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature (London) 1983;303:35–40. doi: 10.1038/303035a0. [DOI] [PubMed] [Google Scholar]
  169. Weiss R. Experimental biology and assay of RNA tumor viruses. In: Weiss R., Teich N., Varmus H., Coffin J., editors. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. pp. 209–260. (‘RNA Tumor Viruses’). [Google Scholar]
  170. Weiss S.R., Varmus H.E., Bishop J.M. The size and genetic composition of virus-specific RNA's in the cytoplasm of cells producing avian sarcoma-leukosis viruses. Cell. 1977;12:983–992. doi: 10.1016/0092-8674(77)90163-5. [DOI] [PubMed] [Google Scholar]
  171. Welch W.J., Sefton B.M. Two small virus-specific polypeptides are produced during infection with Sindbis virus. J. Virol. 1979;38:1186–1195. doi: 10.1128/jvi.29.3.1186-1195.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Wertz G.W., Collins P.L., Huang Y., Gruber C., Levine S., Ball L.A. Nucleotide sequence of the G protein gene of human respiratory syncytial virus reveals an unusual type of viral membrane protein. Proc. Natl. Acad. Sci. U.S.A. 1985;82:4075–4079. doi: 10.1073/pnas.82.12.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. White J., Helenius A. PH-dependent fusion between the Semliki Forest virus membrance and liposomes. Proc. Natl. Acad. Sci. U.S.A. 1980;77:3273–3277. doi: 10.1073/pnas.77.6.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. White J., Helenius A., Gething M-J. Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature (London) 1982;300:658–659. doi: 10.1038/300658a0. [DOI] [PubMed] [Google Scholar]
  175. Wills J.W., Srinivas R.V., Hunter E. Mutations of the Rous sarcoma virusenv gene that affect the transport and subcellular location of the glycoprotein products. J. Cell Biol. 1984;99:2011–2023. doi: 10.1083/jcb.99.6.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature (London) 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  177. Wolff L., Scolnick E., Ruscetti S. Envelope gene of the Friend spleen focus-forming virus: Deletion and insertions in 3′ gp70/p15E-encoding region have resulted in unique features in the primary structure of its protein product. Proc. Natl. Acad. Sci. U.S.A. 1983;80:4718–4722. doi: 10.1073/pnas.80.15.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Woodgett C., Rose J.K. Amino-terminal mutation of the vesicular stomatitis virus glycoprotein does not affect its fusion activity. J. Virol. 1986;59:486–489. doi: 10.1128/jvi.59.2.486-489.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Wunner W.H., Dietzschold B., Wiktor T.J. Antigenic structure of rhabdoviruses. In: van Regenmortel M.H.V., Neurath A.R., editors. Elsevier; Amsterdam: 1985. pp. 367–388. (‘Immunochemistry of Viruses. The Basis for Serodiagnosis and Vaccines’). [Google Scholar]
  180. Yamamoto K., Suzuki K., Simizu B. Hemolytic activity of the envelope glycoproteins of western equine encephalitis virus in reconstitution experiments. Virology. 1981;109:452–454. doi: 10.1016/0042-6822(81)90518-3. [DOI] [PubMed] [Google Scholar]
  181. Ziemiecki A., Garoff H. Subunit composition of the membrane glycoprotein complex of Semliki Forest virus. J. Mol. Biol. 1978;122:259–269. doi: 10.1016/0022-2836(78)90189-4. [DOI] [PubMed] [Google Scholar]