Plasmid mediated mutagenesis of a cellular gene in transfected eukaryotic cells (original) (raw)

Abstract

NIH3T3 cells are widely used in transformation assays and readily take up transfected DNA. A system has been devised using NIH3T3 cells to measure the mutagenic effect of transfected DNA on recipient cell genes. NIH3T3 cells can be mutated to 6-thioguanine resistance at a frequency which suggests that at least a portion of the cells have only one functional copy of the HGPRT gene. They have a low spontaneous background mutation frequency (approximately 1 X 10(-7)). Transfection of three different plasmids into NIH3T3 cells induced 6-thioguanine resistant mutants at frequencies ranging from 3 to 11 fold above background. The mutant phenotype is stable and reversion frequencies of several mutants are less than or equal to 1 X 10(-7). Southern blot analysis of the HGPRT gene in several mutants showed that 4 of 26 mutants (15.4%) had detectable alterations in the structure of the HGPRT gene. Interestingly 3 of the 4 mutants showing rearrangements were obtained by transfection of the HSV-2 morphological transforming region.

561

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashman C. R., Davidson R. L. High spontaneous mutation frequency in shuttle vector sequences recovered from mammalian cellular DNA. Mol Cell Biol. 1984 Nov;4(11):2266–2272. doi: 10.1128/mcb.4.11.2266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bellett A. J., Younghusband H. B. Spontaneous, mutagen-induced and adenovirus-induced anchorage independent tumorigenic variants of mouse cells. J Cell Physiol. 1979 Oct;101(1):33–47. doi: 10.1002/jcp.1041010106. [DOI] [PubMed] [Google Scholar]
  3. Calos M. P., Lebkowski J. S., Botchan M. R. High mutation frequency in DNA transfected into mammalian cells. Proc Natl Acad Sci U S A. 1983 May;80(10):3015–3019. doi: 10.1073/pnas.80.10.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caskey C. T., Kruh G. D. The HPRT locus. Cell. 1979 Jan;16(1):1–9. doi: 10.1016/0092-8674(79)90182-x. [DOI] [PubMed] [Google Scholar]
  5. Fuscoe J. C., Fenwick R. G., Jr, Ledbetter D. H., Caskey C. T. Deletion and amplification of the HGPRT locus in Chinese hamster cells. Mol Cell Biol. 1983 Jun;3(6):1086–1096. doi: 10.1128/mcb.3.6.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galloway D. A., McDougall J. K. The oncogenic potential of herpes simplex viruses: evidence for a 'hit-and-run' mechanism. Nature. 1983 Mar 3;302(5903):21–24. doi: 10.1038/302021a0. [DOI] [PubMed] [Google Scholar]
  7. Galloway D. A., McDougall J. K. Transformation of rodent cells by a cloned DNA fragment of herpes simplex virus type 2. J Virol. 1981 May;38(2):749–760. doi: 10.1128/jvi.38.2.749-760.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galloway D. A., Nelson J. A., McDougall J. K. Small fragments of herpesvirus DNA with transforming activity contain insertion sequence-like structures. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4736–4740. doi: 10.1073/pnas.81.15.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  10. Gupta R. S., Singh B. Mutagenic responses of five independent genetic loci in CHO cells to a variety of mutagens. Development and characteristics of a mutagen screening system based on selection for multiple drug-resistant markers. Mutat Res. 1982 Jun;94(2):449–466. doi: 10.1016/0027-5107(82)90307-4. [DOI] [PubMed] [Google Scholar]
  11. King H. W., Brookes P. On the mechanism of induction of resistance to 6-thioguanine in Chinese hamster V79 cells by 3-methylcholanthrene-diolepoxide. Carcinogenesis. 1985 Oct;6(10):1471–1476. doi: 10.1093/carcin/6.10.1471. [DOI] [PubMed] [Google Scholar]
  12. King H. W., Brookes P. On the nature of the mutations induced by the diolepoxide of benzo[a]pyrene in mammalian cells. Carcinogenesis. 1984 Jul;5(7):965–970. doi: 10.1093/carcin/5.7.965. [DOI] [PubMed] [Google Scholar]
  13. King W., Patel M. D., Lobel L. I., Goff S. P., Nguyen-Huu M. C. Insertion mutagenesis of embryonal carcinoma cells by retroviruses. Science. 1985 May 3;228(4699):554–558. doi: 10.1126/science.3838595. [DOI] [PubMed] [Google Scholar]
  14. Konecki D. S., Brennand J., Fuscoe J. C., Caskey C. T., Chinault A. C. Hypoxanthine-guanine phosphoribosyltransferase genes of mouse and Chinese hamster: construction and sequence analysis of cDNA recombinants. Nucleic Acids Res. 1982 Nov 11;10(21):6763–6775. doi: 10.1093/nar/10.21.6763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lau C. C., Gadi I. K., Kalvonjian S., Anisowicz A., Sager R. Plasmid-induced "hit-and-run" tumorigenesis in Chinese hamster embryo fibroblast (CHEF) cells. Proc Natl Acad Sci U S A. 1985 May;82(9):2839–2843. doi: 10.1073/pnas.82.9.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lukash L. L., Buzhievskaya T. I., Varshaver N. B., Shapiro N. I. Oncogenic adenovirus as mutagen for chinese hamster cells in vitro. Somatic Cell Genet. 1981 Mar;7(2):133–146. doi: 10.1007/BF01567653. [DOI] [PubMed] [Google Scholar]
  17. Marengo C., Mbikay M., Weber J., Thirion J. P. Adenovirus-induced mutations at the hypoxanthine phosphoribosyltransferase locus of Chinese hamster cells. J Virol. 1981 Apr;38(1):184–190. doi: 10.1128/jvi.38.1.184-190.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Melton D. W., Konecki D. S., Brennand J., Caskey C. T. Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2147–2151. doi: 10.1073/pnas.81.7.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nelson J. A., Fleckenstein B., Galloway D. A., McDougall J. K. Transformation of NIH 3T3 cells with cloned fragments of human cytomegalovirus strain AD169. J Virol. 1982 Jul;43(1):83–91. doi: 10.1128/jvi.43.1.83-91.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nelson J. A., Fleckenstein B., Jahn G., Galloway D. A., McDougall J. K. Structure of the transforming region of human cytomegalovirus AD169. J Virol. 1984 Jan;49(1):109–115. doi: 10.1128/jvi.49.1.109-115.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Neill J. P., Brimer P. A., Hsie A. W. Fluctuation analyses of spontaneous mutations to 6-thioguanine resistance in Chinese hamster ovary cells in culture. Mutat Res. 1981 Jul;82(2):343–353. doi: 10.1016/0027-5107(81)90163-9. [DOI] [PubMed] [Google Scholar]
  22. Paraskeva C., Roberts C., Biggs P., Gallimore P. H. Human adenovirus type 2 but not adenovirus type 12 is mutagenic at the hypoxanthine phosphoribosyltransferase locus of cloned rat liver epithelial cells. J Virol. 1983 Apr;46(1):131–136. doi: 10.1128/jvi.46.1.131-136.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Patel P. I., Nussbaum R. L., gramson P. E., Ledbetter D. H., Caskey C. T., Chinault A. C. Organization of the HPRT gene and related sequences in the human genome. Somat Cell Mol Genet. 1984 Sep;10(5):483–493. doi: 10.1007/BF01534853. [DOI] [PubMed] [Google Scholar]
  24. Radman M., Jeggo P., Wagner R. Chromosomal rearrangement and carcinogenesis. Mutat Res. 1982 May;98(3):249–264. doi: 10.1016/0165-1110(82)90035-5. [DOI] [PubMed] [Google Scholar]
  25. Raptis L., de Souza A. C., M'Bikay M., Thirion J. P., Weber J. Stable integration of adenovirus DNA is not required for the induction of mutations in the hypoxanthine phosphoribosyltransferase gene in Chinese hamster cells. Mutat Res. 1982 Nov;105(5):371–375. doi: 10.1016/0165-7992(82)90109-9. [DOI] [PubMed] [Google Scholar]
  26. Razzaque A., Chakrabarti S., Joffee S., Seidman M. Mutagenesis of a shuttle vector plasmid in mammalian cells. Mol Cell Biol. 1984 Mar;4(3):435–441. doi: 10.1128/mcb.4.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Razzaque A., Mizusawa H., Seidman M. M. Rearrangement and mutagenesis of a shuttle vector plasmid after passage in mammalian cells. Proc Natl Acad Sci U S A. 1983 May;80(10):3010–3014. doi: 10.1073/pnas.80.10.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Skinner G. R. Transformation of primary hamster embryo fibroblasts by type 2 simplex virus: evidence for a "hit and run" mechanism. Br J Exp Pathol. 1976 Aug;57(4):361–376. [PMC free article] [PubMed] [Google Scholar]
  29. Varmus H. E., Quintrell N., Ortiz S. Retroviruses as mutagens: insertion and excision of a nontransforming provirus alter expression of a resident transforming provirus. Cell. 1981 Jul;25(1):23–36. doi: 10.1016/0092-8674(81)90228-2. [DOI] [PubMed] [Google Scholar]