Muscle fibre type composition, motoneuron firing properties, axonal conduction velocity and refractory period for foot extensor motor units in dystrophia myotonica (original) (raw)

Abstract

Seven patients with dystrophia myotonica were investigated using neurophysiological combined with histochemical techniques to elucidate motor unit properties in foot extensor muscles, which are often involved in the early stages of this disorder. For the 25 extensor digitorum brevis motor units studied the axonal conduction velocity, the axonal refractory period and the voluntary firing properties were within normal limits. However, high threshold motor units were not observed and the mean value of the axonal conduction velocities was lower (p less than 0.02) for the dystrophia myotonica motor units when compared with corresponding data from healthy subjects. There were also signs of impaired impulse propagation in the terminal part of the motor unit. In muscle biopsy specimens from the anterior tibial muscle, fibre type composition and structure were demonstrated using enzyme histochemical techniques for adenosine-triphosphate and immunohistochemical techniques for identification of the types of myosin isoform present. The histochemical findings indicated a type I fibre dominance, which was most obvious in the more seriously affected muscles. Neonatal myosin was observed preferentially in small but also in some normal sized fibres. Furthermore, some ring fibres were present and these showed staining with antineonatal myosin in their superficial portion. This indicates that an abnormal regeneration is one cause of the myopathic appearance of the muscle fibres in dystrophia myotonica. These investigations show that there is a reduced proportion of type II motor units in foot extensor muscles involved in the myopathy in dystrophia myotonica although it cannot definitely be established whether this is due to a loss of high threshold type II motor units or type II to type I transformation.

1036

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. E., Johnson A. G., Woolf A. L. The intramuscular nerve endings in dystrophia myotonica--a biopsy study by vital staining and electron microscopy. J Anat. 1969 Jul;105(Pt 1):1–26. [PMC free article] [PubMed] [Google Scholar]
  2. Argov Z., Gardner-Medwin D., Johnson M. A., Mastaglia F. L. Congenital myotonic dystrophy: fiber type abnormalities in two cases. Arch Neurol. 1980 Nov;37(11):693–696. doi: 10.1001/archneur.1980.00500600041006. [DOI] [PubMed] [Google Scholar]
  3. Belanger A. Y., McComas A. J. Contractile properties of muscles in myotonic dystrophy. J Neurol Neurosurg Psychiatry. 1983 Jul;46(7):625–631. doi: 10.1136/jnnp.46.7.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billeter R., Weber H., Lutz H., Howald H., Eppenberger H. M., Jenny E. Myosin types in human skeletal muscle fibers. Histochemistry. 1980;65(3):249–259. doi: 10.1007/BF00493174. [DOI] [PubMed] [Google Scholar]
  5. Borg J. Axonal refractory period of single short toe extensor motor units in man. J Neurol Neurosurg Psychiatry. 1980 Oct;43(10):917–924. doi: 10.1136/jnnp.43.10.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borg J. Conduction velocity and refractory period of single motor nerve fibres in motor neuron disease. J Neurol Neurosurg Psychiatry. 1984 Apr;47(4):349–353. doi: 10.1136/jnnp.47.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borg J. Effects of prior activity on the conduction in single motor units in man. J Neurol Neurosurg Psychiatry. 1983 Apr;46(4):317–321. doi: 10.1136/jnnp.46.4.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Borg J., Grimby L., Hannerz J. Axonal conduction velocity and voluntary discharge properties of individual short toe extensor motor units in man. J Physiol. 1978 Apr;277:143–152. doi: 10.1113/jphysiol.1978.sp012266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Borg J., Grimby L., Hannerz J. Motor neuron firing range, axonal conduction velocity, and muscle fiber histochemistry in neuromuscular diseases. Muscle Nerve. 1979 Nov-Dec;2(6):423–430. doi: 10.1002/mus.880020603. [DOI] [PubMed] [Google Scholar]
  10. Borg J. Refractory period of single motor nerve fibres in man. J Neurol Neurosurg Psychiatry. 1984 Apr;47(4):344–348. doi: 10.1136/jnnp.47.4.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brooke M. H., Kaiser K. K. Muscle fiber types: how many and what kind? Arch Neurol. 1970 Oct;23(4):369–379. doi: 10.1001/archneur.1970.00480280083010. [DOI] [PubMed] [Google Scholar]
  12. Butler-Browne G. S., Bugaisky L. B., Cuénoud S., Schwartz K., Whalen R. G. Denervation of newborn rat muscle does not block the appearance of adult fast myosin heavy chain. Nature. 1982 Oct 28;299(5886):830–833. doi: 10.1038/299830a0. [DOI] [PubMed] [Google Scholar]
  13. Butler-Browne G. S., Whalen R. G. Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Dev Biol. 1984 Apr;102(2):324–334. doi: 10.1016/0012-1606(84)90197-0. [DOI] [PubMed] [Google Scholar]
  14. Chou S. M., Nonaka I. Satellite cells and muscle regeneration in diseased human skeletal muscles. J Neurol Sci. 1977 Oct;34(1):131–145. doi: 10.1016/0022-510x(77)90098-3. [DOI] [PubMed] [Google Scholar]
  15. Dhoot G. K., Pearce G. W. Transformation of fibre types in muscular dystrophies. J Neurol Sci. 1984 Jul;65(1):17–28. doi: 10.1016/0022-510x(84)90063-7. [DOI] [PubMed] [Google Scholar]
  16. Drachman D. B., Fambrough D. M. Are muscle fibers denervated in myotonic dystrophy? Arch Neurol. 1976 Jul;33(7):485–488. doi: 10.1001/archneur.1976.00500070027005. [DOI] [PubMed] [Google Scholar]
  17. Edström L., Grimby L. Effect of exercise on the motor unit. Muscle Nerve. 1986 Feb;9(2):104–126. doi: 10.1002/mus.880090203. [DOI] [PubMed] [Google Scholar]
  18. Edström L. Histochemical and histopathological changes in skeletal muscle in late-onset hereditary distal myopathy (Welander). J Neurol Sci. 1975 Oct;26(2):147–157. doi: 10.1016/0022-510x(75)90027-1. [DOI] [PubMed] [Google Scholar]
  19. Farkas E., Tomé F. M., Fardeau M., Arsénio-Nunes M. L., Dreyfus P., Diebler M. F. Histochemical and ultrastructural study of muscle biopsies in 3 cases of dystrophia myotonica in the newborn child. J Neurol Sci. 1974 Mar;21(3):273–288. doi: 10.1016/0022-510x(74)90172-5. [DOI] [PubMed] [Google Scholar]
  20. Fitzsimons R. B., Hoh J. F. Embryonic and foetal myosins in human skeletal muscle. The presence of foetal myosins in duchenne muscular dystrophy and infantile spinal muscular atrophy. J Neurol Sci. 1981 Nov-Dec;52(2-3):367–384. doi: 10.1016/0022-510x(81)90018-6. [DOI] [PubMed] [Google Scholar]
  21. Grimby L., Holm K., Sjöström L. Abnormal use of remaining motor units during locomotion in peroneal palsy. Muscle Nerve. 1984 May;7(4):327–331. doi: 10.1002/mus.880070411. [DOI] [PubMed] [Google Scholar]
  22. Klinkerfuss G. H. An electron microscopic study of myotonic dystrophy. Arch Neurol. 1967 Feb;16(2):181–193. doi: 10.1001/archneur.1967.00470200069006. [DOI] [PubMed] [Google Scholar]
  23. MACDERMOT V. The histology of the neuromuscular junction in dystrophia myotonica. Brain. 1961 Mar;84:75–84. doi: 10.1093/brain/84.1.75. [DOI] [PubMed] [Google Scholar]
  24. McComas A. J., Campbell M. J., Sica R. E. Electrophysiological study of dystrophia myotonica. J Neurol Neurosurg Psychiatry. 1971 Apr;34(2):132–139. [PMC free article] [PubMed] [Google Scholar]
  25. Moore G. E., Roses A. D., Pericak-Vance M. A., Garrett W. E., Jr, Schachat F. H. Promiscuous expression of myosin in myotonic dystrophy. Muscle Nerve. 1986 May;9(4):355–363. doi: 10.1002/mus.880090413. [DOI] [PubMed] [Google Scholar]
  26. PADYKULA H. A., HERMAN E. Factors affecting the activity of adenosine triphosphatase and other phosphatases as measured by histochemical techniques. J Histochem Cytochem. 1955 May;3(3):161–169. doi: 10.1177/3.3.161. [DOI] [PubMed] [Google Scholar]
  27. Pollock M., Dyck P. J. Peripheral nerve morphometry in myotonic dystrophy. Arch Neurol. 1976 Jan;33(1):33–39. doi: 10.1001/archneur.1976.00500010035006. [DOI] [PubMed] [Google Scholar]
  28. Radu H., Radu A., Blücher G. Quantitative study of the myotonic state. Correlative biochemical, histoenzymological and electrical investigations. Eur Neurol. 1970;4(2):100–107. doi: 10.1159/000114013. [DOI] [PubMed] [Google Scholar]
  29. Sartore S., Gorza L., Schiaffino S. Fetal myosin heavy chains in regenerating muscle. Nature. 1982 Jul 15;298(5871):294–296. doi: 10.1038/298294a0. [DOI] [PubMed] [Google Scholar]
  30. Thornell L. E., Edström L., Billeter R., Butler-Browne G. S., Kjörell U., Whalen R. G. Muscle fibre type composition in distal myopathy (Welander). An analysis with enzyme- and immuno-histochemical, gel-electrophoretic and ultrastructural techniques. J Neurol Sci. 1984 Sep;65(3):269–292. doi: 10.1016/0022-510x(84)90091-1. [DOI] [PubMed] [Google Scholar]
  31. Whalen R. G., Sell S. M., Butler-Browne G. S., Schwartz K., Bouveret P., Pinset-Härstöm I. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature. 1981 Aug 27;292(5826):805–809. doi: 10.1038/292805a0. [DOI] [PubMed] [Google Scholar]