Identification of a lymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures (original) (raw)

Abstract

Factors stimulating eosinophil differentiation in vitro have been studied by means of a liquid bone marrow culture system in which the number of eosinophils is estimated directly by morphology or indirectly by assay for eosinophil peroxidase. The results show that eosinophil colonies are not formed in agar, emphasizing the importance of the liquid culture system. Three types of evidence identify a novel lymphokine, eosinophil-differentiating factor (EDF). (a) Coordinate analysis of lymphokine activity in media conditioned by a panel of parasite antigen and another panel of alloantigen-reactive T cell clones indicates that EDF is distinct from interleukin 2 (IL-2), IL-3, and bone marrow proliferation activity (BMPA). (b) A T hybrid (NIMP- TH1) produces EDF but no IL-2, IL-3, interferon, or colony-stimulating factor. (c) Gel filtration of conditioned media (CM) indicates that NIMP-TH1 and a T clone (NIMP-T2) produce EDF (Mr 46,000). NIMP-T2 also produced IL-3 (Mr 26,000) but this was easily separated from EDF. IL-3 is also shown to have eosinophil differentiation activity (EDA) but this represents a very small proportion of the EDA in T2-CM. Fractionation of WEHI-3-CM indicates that EDA from this source has a similar elution profile to IL-3 (Mr 35-36,000). Furthermore, a comparison of the relative activities in purified IL-3 and WEHI-3-CM indicates that all the EDA can be attributed to the IL-3 in the latter. EDF is shown to stimulate production of eosinophils in long-term bone marrow cultures; the kinetics of eosinophil production suggests that EDF is acting on committed precursors in the bone marrow. The transient nature of eosinophil production suggests that precursors from multipotential stem cells are not produced. The eosinophils produced in these cultures are morphologically normal and functional in that they lysed sheep red blood cells coated with IgG1, IgG2a, and IgG2b, but not with IgM, IgA, or IgE. In addition, they were capable of adhering to and killing Schistosoma mansoni schistosomula.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartelmez S. H., Dodge W. H., Mahmoud A. A., Bass D. A. Stimulation of eosinophil production in vitro by eosinophilopoietin and spleen-cell-derived eosinophil growth-stimulating factor. Blood. 1980 Oct;56(4):706–711. [PubMed] [Google Scholar]
  2. Basten A., Beeson P. B. Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med. 1970 Jun 1;131(6):1288–1305. doi: 10.1084/jem.131.6.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bazill G. W., Haynes M., Garland J., Dexter T. M. Characterization and partial purification of a haemopoietic cell growth factor in WEHI-3 cell conditioned medium. Biochem J. 1983 Mar 15;210(3):747–759. doi: 10.1042/bj2100747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgess A. W., Camakaris J., Metcalf D. Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem. 1977 Mar 25;252(6):1998–2003. [PubMed] [Google Scholar]
  5. Chayen A., Parkhouse R. M. Preparation and properties of a cytotoxic monoclonal rat anti-mouse Thy-1 antibody. J Immunol Methods. 1982;49(1):17–23. doi: 10.1016/0022-1759(82)90362-3. [DOI] [PubMed] [Google Scholar]
  6. Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
  7. Dexter T. M., Testa N. G. In vitro methods in haemopoiesis and lymphopoiesis. J Immunol Methods. 1980;38(3-4):177–190. doi: 10.1016/0022-1759(80)90266-5. [DOI] [PubMed] [Google Scholar]
  8. Farrar J. J., Fuller-Farrar J., Simon P. L., Hilfiker M. L., Stadler B. M., Farrar W. L. Thymoma production of T cell growth factor (Interleukin 2). J Immunol. 1980 Dec;125(6):2555–2558. [PubMed] [Google Scholar]
  9. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  10. Greenberger J. S., Sakakeeny M. A., Humphries R. K., Eaves C. J., Eckner R. J. Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc Natl Acad Sci U S A. 1983 May;80(10):2931–2935. doi: 10.1073/pnas.80.10.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horak H., Turner A. R., Shaw A. R., Yau O. W. Stimulation of [3H]thymidine uptake in mouse marrow by granulocyte-macrophage colony stimulating factor from mouse lung conditioned medium. J Immunol Methods. 1983 Jan 28;56(2):253–260. doi: 10.1016/0022-1759(83)90417-9. [DOI] [PubMed] [Google Scholar]
  12. Hsu C. K., Hsu S. H., Whitney R. A., Jr, Hansen C. T. Immunopathology of schistosomiasis in athymic mice. Nature. 1976 Jul 29;262(5567):397–399. doi: 10.1038/262397a0. [DOI] [PubMed] [Google Scholar]
  13. Ihle J. N., Keller J., Henderson L., Klein F., Palaszynski E. Procedures for the purification of interleukin 3 to homogeneity. J Immunol. 1982 Dec;129(6):2431–2436. [PubMed] [Google Scholar]
  14. Johnson G. R., Nicholas W. L., Metcalf D., McKenzie I. F., Mitchell G. F. Peritoneal cell population of mice infected with Mesocestoides corti as a source of eosinophils. Int Arch Allergy Appl Immunol. 1979;59(3):315–322. doi: 10.1159/000232275. [DOI] [PubMed] [Google Scholar]
  15. López A. F., Strath M., Sanderson C. J. IgG and complement receptors on purified mouse eosinophils and neutrophils. Immunology. 1981 Aug;43(4):779–786. [PMC free article] [PubMed] [Google Scholar]
  16. López A. F., Strath M., Sanderson C. J. Mouse immunoglobulin isotypes mediating cytotoxicity of target cells by eosinophils and neutrophils. Immunology. 1983 Mar;48(3):503–509. [PMC free article] [PubMed] [Google Scholar]
  17. McGarry M. P., Speirs R. S., Jenkins V. K., Trentin J. J. Lymphoid cell dependence of eosinophil response to antigen. J Exp Med. 1971 Sep 1;134(3 Pt 1):801–814. doi: 10.1084/jem.134.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McLaren D. J., Boros D. L. Schistosoma mansoni: schistosomulicidal activity of macrophages isolated from liver granulomas of infected mice. Exp Parasitol. 1983 Dec;56(3):346–357. doi: 10.1016/0014-4894(83)90080-2. [DOI] [PubMed] [Google Scholar]
  19. Metcalf D., Parker J., Chester H. M., Kincade P. W. Formation of eosinophilic-like granulocytic colonies by mouse bone marrow cells in vitro. J Cell Physiol. 1974 Oct;84(2):275–289. doi: 10.1002/jcp.1040840214. [DOI] [PubMed] [Google Scholar]
  20. Nielsen K., Fogh L., Andersen S. Eosinophil response to migrating Ascaris suum larvae in normal and congenitally thymus-less mice. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):919–920. doi: 10.1111/j.1699-0463.1974.tb02394.x. [DOI] [PubMed] [Google Scholar]
  21. Ramalho-Pinto F. J., McLaren D. J., Smithers S. R. Complement-mediated killing of schistosomula of Schistosoma mansoni by rat eosinophils in vitro. J Exp Med. 1978 Jan 1;147(1):147–156. doi: 10.1084/jem.147.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ruscetti F. W., Cypess R. H., Chervenick P. A. Specific release of neutrophillic- and eosinophilic-stimulating factors from sensitized lymphocytes. Blood. 1976 May;47(5):757–765. [PubMed] [Google Scholar]
  23. Stanley E. R., Heard P. M. Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells. J Biol Chem. 1977 Jun 25;252(12):4305–4312. [PubMed] [Google Scholar]
  24. Warren D. J., Sanderson C. J. Production of a T-cell hybrid producing a lymphokine stimulating eosinophil differentiation. Immunology. 1985 Apr;54(4):615–623. [PMC free article] [PubMed] [Google Scholar]