Monoclonal proliferation of Friend murine leukemia virus-transformed myeloblastic cells occurs early in the leukemogenic process (original) (raw)

Abstract

Integrated Friend murine leukemia virus copies were analyzed by the Southern blotting procedure in myeloblastic cell lines obtained after in vitro infection of long-term mouse bone marrow cultures. Several steps leading to the generation of malignant myeloblastic cells after a long latency period were observed in the evolution of infected cultures. Shortly after infection, a random distribution of integrated provirus copies was observed in the DNA of normally differentiating myeloid cells. In contrast, a distinct pattern of integrated Friend murine leukemia virus copies was evident in the first non-differentiating immature myeloblastic cells appearing in cultures, suggesting a monoclonal origin of these cells. For each cell line, characteristic hybridizing fragments were conserved during the 1-year culture period necessary for the acquisition of tumorigenic properties and were also observed in tumors grafted in vivo. We can conclude that monoclonality is effective very early in the myeloid transformation process, as soon as the precursor cells are blocked in their differentiation.

1009

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chattopadhyay S. K., Cloyd M. W., Linemeyer D. L., Lander M. R., Rands E., Lowy D. R. Cellular origin and role of mink cell focus-forming viruses in murine thymic lymphomas. Nature. 1982 Jan 7;295(5844):25–31. doi: 10.1038/295025a0. [DOI] [PubMed] [Google Scholar]
  2. Chattopadhyay S. K., Lander M. R., Rands E., Lowy D. R. Structure of endogenous murine leukemia virus DNA in mouse genomes. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5774–5778. doi: 10.1073/pnas.77.10.5774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chesebro B., Portis J. L., Wehrly K., Nishio J. Effect of murine host genotype on MCF virus expression, latency, and leukemia cell type of leukemias induced by Friend murine leukemia helper virus. Virology. 1983 Jul 15;128(1):221–233. doi: 10.1016/0042-6822(83)90332-x. [DOI] [PubMed] [Google Scholar]
  4. Cooper G. M., Neiman P. E. Transforming genes of neoplasms induced by avian lymphoid leukosis viruses. Nature. 1980 Oct 16;287(5783):656–659. doi: 10.1038/287656a0. [DOI] [PubMed] [Google Scholar]
  5. Cuypers H. T., Selten G., Quint W., Zijlstra M., Maandag E. R., Boelens W., van Wezenbeek P., Melief C., Berns A. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell. 1984 May;37(1):141–150. doi: 10.1016/0092-8674(84)90309-x. [DOI] [PubMed] [Google Scholar]
  6. Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
  7. Fialkow P. J., Jacobson R. J., Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med. 1977 Jul;63(1):125–130. doi: 10.1016/0002-9343(77)90124-3. [DOI] [PubMed] [Google Scholar]
  8. Gross-Bellard M., Oudet P., Chambon P. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem. 1973 Jul 2;36(1):32–38. doi: 10.1111/j.1432-1033.1973.tb02881.x. [DOI] [PubMed] [Google Scholar]
  9. Haran-Ghera N. Spontaneous and induced preleukemia cells in C57BL/6 mice:brief communication. J Natl Cancer Inst. 1978 Mar;60(3):707–710. doi: 10.1093/jnci/60.3.707. [DOI] [PubMed] [Google Scholar]
  10. Hartley J. W., Wolford N. K., Old L. J., Rowe W. P. A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc Natl Acad Sci U S A. 1977 Feb;74(2):789–792. doi: 10.1073/pnas.74.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heard J. M., Fichelson S., Sola B., Martial M. A., Berger R., Varet B., Levy J. P. Malignant myeloblastic transformation of murine long-term bone marrow cultures by F-MuLV: in vitro reproduction of a long-term leukemogenesis, and investigation of preleukemic events. Int J Cancer. 1983 Aug 15;32(2):237–245. doi: 10.1002/ijc.2910320216. [DOI] [PubMed] [Google Scholar]
  12. Heard J. M., Fichelson S., Sola B., Martial M. A., Varet B., Levy J. P. Multistep virus-induced leukemogenesis in vitro: description of a model specifying three steps within the myeloblastic malignant process. Mol Cell Biol. 1984 Jan;4(1):216–220. doi: 10.1128/mcb.4.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  14. Jolicoeur P., Rassart E., Sankar-Mistry P. Strong selection for cells containing new ecotropic recombinant murine leukemia virus provirus after propagation of C57BL/6 radiation-induced thymoma cells in vitro or in vivo. Mol Cell Biol. 1983 Sep;3(9):1675–1679. doi: 10.1128/mcb.3.9.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jähner D., Stuhlmann H., Jaenisch R. Conformation of free and of integrated Moloney leukemia virus proviral DNA in preleukemic and leukemic BALB/Mo mice. Virology. 1980 Feb;101(1):111–123. doi: 10.1016/0042-6822(80)90488-2. [DOI] [PubMed] [Google Scholar]
  16. Koch W., Hunsmann G., Friedrich R. Nucleotide sequence of the envelope gene of Friend murine leukemia virus. J Virol. 1983 Jan;45(1):1–9. doi: 10.1128/jvi.45.1.1-9.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Langdon W. Y., Hoffman P. M., Silver J. E., Buckler C. E., Hartley J. W., Ruscetti S. K., Morse H. C., 3rd Identification of a spleen focus-forming virus in erythroleukemic mice infected with a wild-mouse ecotropic murine leukemia virus. J Virol. 1983 Apr;46(1):230–238. doi: 10.1128/jvi.46.1.230-238.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lenz J., Crowther R., Straceski A., Haseltine W. Nucleotide sequence of the Akv env gene. J Virol. 1982 May;42(2):519–529. doi: 10.1128/jvi.42.2.519-529.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mathieu-Mahul D., Heard J. M., Fichelson S., Gisselbrecht S., Sola B., Larsen C. J. Viral expression in two myelomonocytic cell lines obtained from long-term bone marrow culture infected with the Friend polycythemia-inducing virus (FV-P). Virology. 1982 May;119(1):59–67. doi: 10.1016/0042-6822(82)90065-4. [DOI] [PubMed] [Google Scholar]
  20. Moreau-Gachelin F., Robert-Lezenes J., Mathieu-Mahul D., Gisselbrecht S., Larsen C. J. Isolation and characterization of a gp 70+ non producer Friend tumor cell clone. Biochimie. 1983 Apr-May;65(4-5):259–266. doi: 10.1016/s0300-9084(83)80277-6. [DOI] [PubMed] [Google Scholar]
  21. Nusse R., Varmus H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982 Nov;31(1):99–109. doi: 10.1016/0092-8674(82)90409-3. [DOI] [PubMed] [Google Scholar]
  22. Oliff A. I., Hager G. L., Chang E. H., Scolnick E. M., Chan H. W., Lowy D. R. Transfection of molecularly cloned Friend murine leukemia virus DNA yields a highly leukemogenic helper-independent type C virus. J Virol. 1980 Jan;33(1):475–486. doi: 10.1128/jvi.33.1.475-486.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peters G., Lee A. E., Dickson C. Activation of cellular gene by mouse mammary tumour virus may occur early in mammary tumour development. Nature. 1984 May 17;309(5965):273–275. doi: 10.1038/309273a0. [DOI] [PubMed] [Google Scholar]
  24. Rassart E., Sankar-Mistry P., Lemay G., DesGroseillers L., Jolicoeur P. New class of leukemogenic ecotropic recombinant murine leukemia virus isolated from radiation-induced thymomas of C57BL/6 mice. J Virol. 1983 Feb;45(2):565–575. doi: 10.1128/jvi.45.2.565-575.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shibuya T., Mak T. W. Host control of susceptibility to erythroleukemia and to the types of leukemia induced by Friend murine leukemia virus: initial and late stages. Cell. 1982 Dec;31(2 Pt 1):483–493. doi: 10.1016/0092-8674(82)90141-6. [DOI] [PubMed] [Google Scholar]
  26. Silver J. E., Fredrickson T. N. A new gene that controls the type of leukemia induced by Friend murine leukemia virus. J Exp Med. 1983 Aug 1;158(2):493–505. doi: 10.1084/jem.158.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Silver J. Role of mink cell focus-inducing virus in leukemias induced by Friend ecotropic virus. J Virol. 1984 Jun;50(3):872–877. doi: 10.1128/jvi.50.3.872-877.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  29. Takeuchi H., Kato A., Hays E. F. Presence of prelymphoma cells in the bone marrow of the lymphomagenic virus-treated AKR mouse. Cancer Res. 1984 Mar;44(3):1008–1011. [PubMed] [Google Scholar]
  30. Tsichlis P. N., Strauss P. G., Hu L. F. A common region for proviral DNA integration in MoMuLV-induced rat thymic lymphomas. 1983 Mar 31-Apr 6Nature. 302(5907):445–449. doi: 10.1038/302445a0. [DOI] [PubMed] [Google Scholar]
  31. Vogt M. Properties of "mink cell focus-inducing" (MCF) virus isolated from spontaneous lymphoma lines of BALB/c mice carrying Moloney leukemia virus as an endogenous virus. Virology. 1979 Feb;93(1):226–236. doi: 10.1016/0042-6822(79)90290-3. [DOI] [PubMed] [Google Scholar]
  32. van der Putten H., Quint W., van Raaij J., Maandag E. R., Verma I. M., Berns A. M-MuLV-induced leukemogenesis: integration and structure of recombinant proviruses in tumors. Cell. 1981 Jun;24(3):729–739. doi: 10.1016/0092-8674(81)90099-4. [DOI] [PubMed] [Google Scholar]