Characterization of mouse 45S ribosomal RNA subspecies suggests that the first processing cleavage occurs 600 +/- 100 nucleotides from the 5' end and the second 500 +/- 100 nucleotides from the 3' end of a 13.9 kb precursor (original) (raw)

Abstract

Mouse fibroblasts labeled 1-9 h with 3H-uridine contained radioactive 45S rRNA subspecies of 13.9, 13.3, and 12.8 kb, as determined by hybrid-selection with rDNA plasmids and by electrophoresis in agarose-formaldehyde. The 13.9 kb subspecies contained 5' and 3' terminal rDNA sequences known from the work of Grummt and colleagues to be at or near the ends of the primary transcript. The 13.3 kb subspecies contained the 3' terminal sequence but lacked the 5' terminal sequence. The 12.8 kb subspecies lacked both terminal sequences. Washed nuclei produced one discrete species of 13.9 kb. The results suggested that synthesis of the primary transcript terminated 500 +/- 100 nucleotides beyond the 3' end of 28S rRNA, that the first processing cleavage occurred 600 +/- 100 nucleotides from the origin of synthesis, and the second cleavage occurred near the 3' end of 28S rRNA. Changes in relative radioactivities among the subspecies after serum stimulation or after treatment with low concentrations of cycloheximide suggesting that processing was not perfectly coupled with synthesis and that cycloheximide inhibited one cleavage more than others.

4905

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S. A., Todaro G. J. Basis for the acquisition of malignant potential by mouse cells cultivated in vitro. Science. 1968 Nov 29;162(3857):1024–1026. doi: 10.1126/science.162.3857.1024. [DOI] [PubMed] [Google Scholar]
  2. Aaronson S. A., Todaro G. J. Development of 3T3-like lines from Balb-c mouse embryo cultures: transformation susceptibility to SV40. J Cell Physiol. 1968 Oct;72(2):141–148. doi: 10.1002/jcp.1040720208. [DOI] [PubMed] [Google Scholar]
  3. Bandman E., Gurney T., Jr Differences in the cytoplasmic distribution of newly synthesized poly (A) in serum-stimulated and resting cultures of BALB/c 3T3 cells. Exp Cell Res. 1975 Jan;90(1):159–168. doi: 10.1016/0014-4827(75)90369-9. [DOI] [PubMed] [Google Scholar]
  4. Bayev A., Georgiev O. I., Hadjiolov A. A., Nikolaev N., Skryabin K. G., Zakharyev V. M. The structure of the yeast ribosomal RNA genes. 3. Precise mapping of the 18 S and 25 S rRNA genes and structure of the adjacent regions. Nucleic Acids Res. 1981 Feb 25;9(4):789–799. doi: 10.1093/nar/9.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drouin J. Cloning of human mitochondrial DNA in Escherichia coli. J Mol Biol. 1980 Jun 15;140(1):15–34. doi: 10.1016/0022-2836(80)90354-x. [DOI] [PubMed] [Google Scholar]
  6. Foster D. N., Gurney T., Jr Nuclear location of mammalian DNA polymerase activities. J Biol Chem. 1976 Dec 25;251(24):7893–7898. [PubMed] [Google Scholar]
  7. Foster D. O., Pardee A. B. Transport of amino acids by confluent and nonconfluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips. J Biol Chem. 1969 May 25;244(10):2675–2681. [PubMed] [Google Scholar]
  8. Georgiev O. I., Nosikov V. V., Braga E. A., Hadjiolov A. A. Sequence heterogeneity in the internal transcribed spacers of two rat ribosomal DNA clones. Biochem Int. 1984 Feb;8(2):225–229. [PubMed] [Google Scholar]
  9. Grummt I., Gross H. J. Structural organization of mouse rDNA: comparison of transcribed and non-transcribed regions. Mol Gen Genet. 1980 Jan;177(2):223–229. doi: 10.1007/BF00267433. [DOI] [PubMed] [Google Scholar]
  10. Grummt I. Mapping of a mouse ribosomal DNA promoter by in vitro transcription. Nucleic Acids Res. 1981 Nov 25;9(22):6093–6102. doi: 10.1093/nar/9.22.6093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grummt I. Nucleotide sequence requirements for specific initiation of transcription by RNA polymerase I. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6908–6911. doi: 10.1073/pnas.79.22.6908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grummt I., Sorbaz H., Hofmann A., Roth E. Spacer sequences downstream of the 28S RNA coding region are part of the mouse rDNA transcription unit. Nucleic Acids Res. 1985 Apr 11;13(7):2293–2304. doi: 10.1093/nar/13.7.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grummt I. Synthesis of RNA molecules larger than 45 S by isolated rat-liver nucleoli. Eur J Biochem. 1975 Sep 1;57(1):159–167. doi: 10.1111/j.1432-1033.1975.tb02286.x. [DOI] [PubMed] [Google Scholar]
  14. Gurney T., Jr, Collard M. W. Nonaqueous fractionation of HeLa cells in glycols. Anal Biochem. 1984 May 15;139(1):25–34. doi: 10.1016/0003-2697(84)90385-3. [DOI] [PubMed] [Google Scholar]
  15. Gurney T., Jr, Sorenson D. K., Gurney E. G., Wills N. M. SV40 RNA: filter hybridization for rapid isolation and characterization of rare RNAs. Anal Biochem. 1982 Sep 1;125(1):80–90. doi: 10.1016/0003-2697(82)90385-2. [DOI] [PubMed] [Google Scholar]
  16. Hadjiolov A. A. Biogenesis of ribosomes in eukaryotes. Subcell Biochem. 1980;7:1–80. doi: 10.1007/978-1-4615-7948-9_1. [DOI] [PubMed] [Google Scholar]
  17. Herman R. C., Williams J. G., Penman S. Message and non-message sequences adjacent to poly(A) in steady state heterogeneous nuclear RNA of HeLa cells. Cell. 1976 Mar;7(3):429–437. doi: 10.1016/0092-8674(76)90173-2. [DOI] [PubMed] [Google Scholar]
  18. Herz C., Stavnezer E., Krug R., Gurney T., Jr Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell. 1981 Nov;26(3 Pt 1):391–400. doi: 10.1016/0092-8674(81)90208-7. [DOI] [PubMed] [Google Scholar]
  19. Ish-Horowicz D., Burke J. F. Rapid and efficient cosmid cloning. Nucleic Acids Res. 1981 Jul 10;9(13):2989–2998. doi: 10.1093/nar/9.13.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kavenoff R., Zimm B. H. Chromosome-sized DNA molecules from Drosophila. Chromosoma. 1973;41(1):1–27. doi: 10.1007/BF00284071. [DOI] [PubMed] [Google Scholar]
  21. Kominami R., Mishima Y., Urano Y., Sakai M., Muramatsu M. Cloning and determination of the transcription termination site of ribosomal RNA gene of the mouse. Nucleic Acids Res. 1982 Mar 25;10(6):1963–1979. doi: 10.1093/nar/10.6.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leder P. The elongation reactions in protein synthesis. Adv Protein Chem. 1973;27:213–242. doi: 10.1016/s0065-3233(08)60448-9. [DOI] [PubMed] [Google Scholar]
  23. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  24. Miller K. G., Sollner-Webb B. Transcription of mouse rRNA genes by RNA polymerase I: in vitro and in vivo initiation and processing sites. Cell. 1981 Nov;27(1 Pt 2):165–174. doi: 10.1016/0092-8674(81)90370-6. [DOI] [PubMed] [Google Scholar]
  25. Mishima Y., Yamamoto O., Kominami R., Muramatsu M. In vitro transcription of a cloned mouse ribosomal RNA gene. Nucleic Acids Res. 1981 Dec 21;9(24):6773–6785. doi: 10.1093/nar/9.24.6773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mory Y. Y., Gefter M. L. Synthesis of messenger RNA-like molecules in isolated myeloma nuclei. Nucleic Acids Res. 1977 Jun;4(6):1739–1757. doi: 10.1093/nar/4.6.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
  28. Roeder R. G., Rutter W. J. Specific nucleolar and nucleoplasmic RNA polymerases. Proc Natl Acad Sci U S A. 1970 Mar;65(3):675–682. doi: 10.1073/pnas.65.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stanners C. P., Becker H. Control of macromolecular synthesis in proliferating and resting Syrian hamster cells in monolayer culture. I. Ribosome function. J Cell Physiol. 1971 Feb;77(1):31–42. doi: 10.1002/jcp.1040770105. [DOI] [PubMed] [Google Scholar]
  30. Stewart M. A., Hall L. M., Maden B. E. Multiple heterogeneities in the transcribed spacers of ribosomal DNA from Xenopus laevis. Nucleic Acids Res. 1983 Feb 11;11(3):629–646. doi: 10.1093/nar/11.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tiollais P., Galibert F., Boiron M. Evidence for the existence of several molecular species in the "45S fraction" of mammalian ribosomal precursor RNA. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1117–1120. doi: 10.1073/pnas.68.6.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tsai R. L., Green H. Rate of RNA synthesis in ghost monolayers obtained from fibroblasts preparing for division. Nat New Biol. 1973 Jun 6;243(127):168–170. doi: 10.1038/newbio243168a0. [DOI] [PubMed] [Google Scholar]
  33. Udvardy A., Seifart K. H. Transcription of specific genes in isolated nuclei from HeLa cells in vitro. Eur J Biochem. 1976 Feb 16;62(2):353–363. doi: 10.1111/j.1432-1033.1976.tb10167.x. [DOI] [PubMed] [Google Scholar]
  34. Zimmerman S. B., Sandeen D. The ribonuclease activity of crystallized pancreatic deoxyribonuclease. Anal Biochem. 1966 Feb;14(2):269–277. doi: 10.1016/0003-2697(66)90137-0. [DOI] [PubMed] [Google Scholar]
  35. Zylber E. A., Penman S. Products of RNA polymerases in HeLa cell nuclei. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2861–2865. doi: 10.1073/pnas.68.11.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]