Immunocytochemical study of the partition and distribution of Sindbis virus glycoproteins in freeze-fractured membranes of infected baby hamster kidney cells (original) (raw)

Abstract

Sindbis virus-infected baby hamster kidney cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies or with conventional lectin label (wheat germ agglutinin) were used in conjunction with colloidal gold-conjugated protein A or ovomucoid, respectively. In addition, intact infected cells were analyzed with both labeling procedures. Experiments with Sindbis infected-chick embryo fibroblast cells were carried out as controls. Viral transmembrane glycoproteins appeared present in freeze- fractured inner and outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes; a clear preferential partition with the exoplasmic faces of all intracellular membranes was observed. By contrast, at the plasma membrane level, Sindbis glycoproteins were found to partition preferentially with the protoplasmic face. It seems likely that this protoplasmic partition is related to the binding with the nucleocapsid that takes place during the budding of the virus. At the cell surface, viral glycoproteins always appeared clustered and were predominantly associated with budding figures: moreover, large portions of the plasma membrane were devoid of both glycoproteins and budding viruses.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguas A. P., Pinto da Silva P. Regionalization of transmembrane glycoproteins in the plasma membrane of boar sperm head is revealed by fracture-label. J Cell Biol. 1983 Nov;97(5 Pt 1):1356–1364. doi: 10.1083/jcb.97.5.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergmann J. E., Singer S. J. Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells. J Cell Biol. 1983 Dec;97(6):1777–1787. doi: 10.1083/jcb.97.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birdwell C. R., Strauss E. G., Strauss J. H. Replication of Sindbis virus. 3. An electron microscopic study of virus maturation using the surface replica technique. Virology. 1973 Dec;56(2):429–438. doi: 10.1016/0042-6822(73)90047-0. [DOI] [PubMed] [Google Scholar]
  4. Bonatti S., Blobel G. Absence of a cleavable signal sequence in Sindbis virus glycoprotein PE2. J Biol Chem. 1979 Dec 25;254(24):12261–12264. [PubMed] [Google Scholar]
  5. Bonatti S., Cancedda F. D. Posttranslational modifications of Sindbis virus glycoproteins: electrophoretic analysis of pulse-chase-labeled infected cells. J Virol. 1982 Apr;42(1):64–70. doi: 10.1128/jvi.42.1.64-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonatti S., Cancedda R., Blobel G. Membrane biogenesis. In vitro cleavage, core glycosylation, and integration into microsomal membranes of sindbis virus glycoproteins. J Cell Biol. 1979 Jan;80(1):219–224. doi: 10.1083/jcb.80.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonatti S., Migliaccio G., Blobel G., Walter P. Role of signal recognition particle in the membrane assembly of Sindbis viral glycoproteins. Eur J Biochem. 1984 May 2;140(3):499–502. doi: 10.1111/j.1432-1033.1984.tb08130.x. [DOI] [PubMed] [Google Scholar]
  8. Garoff H., Simons K., Dobberstein B. Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro. J Mol Biol. 1978 Oct 5;124(4):587–600. doi: 10.1016/0022-2836(78)90173-0. [DOI] [PubMed] [Google Scholar]
  9. Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
  10. Green J., Griffiths G., Louvard D., Quinn P., Warren G. Passage of viral membrane proteins through the Golgi complex. J Mol Biol. 1981 Nov 15;152(4):663–698. doi: 10.1016/0022-2836(81)90122-4. [DOI] [PubMed] [Google Scholar]
  11. Hakimi J., Atkinson P. H. Glycosylation of intracellular Sindbis virus glycoproteins. Biochemistry. 1982 Apr 27;21(9):2140–2145. doi: 10.1021/bi00538a024. [DOI] [PubMed] [Google Scholar]
  12. Johnson D. C., Schlesinger M. J., Elson E. L. Fluorescence photobleaching recovery measurements reveal differences in envelopment of Sindbis and vesicular stomatitis viruses. Cell. 1981 Feb;23(2):423–431. doi: 10.1016/0092-8674(81)90137-9. [DOI] [PubMed] [Google Scholar]
  13. PFEFFERKORN E. R., HUNTER H. S. PURIFICATION AND PARTIAL CHEMICAL ANALYSIS OF SINDBIS VIRUS. Virology. 1963 Jul;20:433–445. doi: 10.1016/0042-6822(63)90092-8. [DOI] [PubMed] [Google Scholar]
  14. Pinto da Silva P., Parkison C., Dwyer N. Fracture-label:O cytochemistry of freeze-fracture faces in the erythrocyte membrane. Proc Natl Acad Sci U S A. 1981 Jan;78(1):343–347. doi: 10.1073/pnas.78.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pinto da Silva P., Torrisi M. R., Kachar B. Freeze-fracture cytochemistry: localization of wheat-germ agglutinin and concanavalin A binding sites on freeze-fractured pancreatic cells. J Cell Biol. 1981 Nov;91(2 Pt 1):361–372. doi: 10.1083/jcb.91.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schlesinger S., Schlesinger M. J. Formation of Sindbis virus proteins: identification of a precursor for one of the envelope proteins. J Virol. 1972 Nov;10(5):925–932. doi: 10.1128/jvi.10.5.925-932.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schmidt M. F., Schlesinger M. J. Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J Biol Chem. 1980 Apr 25;255(8):3334–3339. [PubMed] [Google Scholar]
  18. Simons K., Garoff H. The budding mechanisms of enveloped animal viruses. J Gen Virol. 1980 Sep;50(1):1–21. doi: 10.1099/0022-1317-50-1-1. [DOI] [PubMed] [Google Scholar]
  19. Slot J. W., Geuze H. J. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol. 1981 Aug;90(2):533–536. doi: 10.1083/jcb.90.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Torrisi M. R., Da Silva P. P. T-lymphocyte heterogeneity: wheat germ agglutinin labeling of transmembrane glycoproteins. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5671–5674. doi: 10.1073/pnas.79.18.5671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Torrisi M. R., Pinto da Silva P. Compartmentalization of intracellular membrane glycocomponents is revealed by fracture-label. J Cell Biol. 1984 Jan;98(1):29–34. doi: 10.1083/jcb.98.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ziemiecki A., Garoff H., Simons K. Formation of the Semliki Forest virus membrane glycoprotein complexes in the infected cell. J Gen Virol. 1980 Sep;50(1):111–123. doi: 10.1099/0022-1317-50-1-111. [DOI] [PubMed] [Google Scholar]
  23. da Silva P. P., Kachar B., Torrisi M. R., Brown C., Parkison C. Freeze-fracture cytochemistry: replicas of critical point-dried cells and tissues after fracture-label. Science. 1981 Jul 10;213(4504):230–233. doi: 10.1126/science.7244630. [DOI] [PubMed] [Google Scholar]
  24. da Silva P. P., Torrisi M. R. Freeze-fracture cytochemistry: partition of glycophorin in freeze-fractured human erythrocyte membranes. J Cell Biol. 1982 May;93(2):463–469. doi: 10.1083/jcb.93.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]