Agonist-induced myopathy at the neuromuscular junction is mediated by calcium (original) (raw)

Abstract

Inactivation of cholinesterases at mammalian neuromuscular junctions (nmj) produces extensive muscle "necrosis." Fine-structurally, this myopathy begins near the nmj with an increase in large-diameter vesicles in the soleplasm, the dissolution of Z-disks, dilation of mitochondria, destruction of sarcoplasmic reticulum, and often a highly specific contracture of the muscle under the endplate. Since a Ca++- activated protease which specifically removes Z-disks is known to exist in mammalian skeletal muscle, we tested the possibility that the myopathy after esterase inactivation is due to the prolongation of acetylcholine lifetime and thus of Ca++ influx. We first produced the myopathy near endplates by inactivating esterases with diisopropylfluorophosphate (DFP) followed by nerve stimulation for 1--2 h in vitro. The myopathy was later mimicked by bath application of carbamylcholine without esterase inhibitors. This myopathy could be prevented by inactivating the acetylcholine receptors (AChR) with alpha- bungarotoxin (alpha-BGT) or by removing Ca++ from the bath with EGTA. These results favor the hypothesis that esterase inhibition leads to an agonist-induced myopathy, which is mediated by Ca++ and requires an intact AChR.

Full Text

The Full Text of this article is available as a PDF (984.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R. A study of desensitization using voltage clamp. Pflugers Arch. 1975 Oct 28;360(2):135–144. doi: 10.1007/BF00580536. [DOI] [PubMed] [Google Scholar]
  2. Ariëns A. T., Meeter E., Wolthuis O. L., van Benthem R. M. Reversible necrosis at the end-plate region in striated muscles of the rat poisoned with cholinesterase inhibitors. Experientia. 1969 Jan 15;25(1):57–59. doi: 10.1007/BF01903894. [DOI] [PubMed] [Google Scholar]
  3. Busch W. A., Stromer M. H., Goll D. E., Suzuki A. Ca 2+ -specific removal of Z lines from rabbit skeletal muscle. J Cell Biol. 1972 Feb;52(2):367–381. doi: 10.1083/jcb.52.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Creese R., Franklin G. I., Mitchell L. D. Sodium entry in rat diaphragm induced by depolarizing drugs. J Physiol. 1977 Nov;272(2):295–316. doi: 10.1113/jphysiol.1977.sp012045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Creese R., Franklin G. I., Mitchell L. D. Two mechanisms for spontaneous recovery from depolarising drugs in rat muscle. Nature. 1976 Jun 3;261(5559):416–417. doi: 10.1038/261416a0. [DOI] [PubMed] [Google Scholar]
  6. Dayton W. R., Goll D. E., Zeece M. G., Robson R. M., Reville W. J. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry. 1976 May 18;15(10):2150–2158. doi: 10.1021/bi00655a019. [DOI] [PubMed] [Google Scholar]
  7. Dayton W. R., Reville W. J., Goll D. E., Stromer M. H. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry. 1976 May 18;15(10):2159–2167. doi: 10.1021/bi00655a020. [DOI] [PubMed] [Google Scholar]
  8. Engel A. G., Lambert E. H., Santa T. Study of long-term anticholinesterase therapy. Effects on neuromuscular transmission and on motor end-plate fine structure. Neurology. 1973 Dec;23(12):1273–1281. doi: 10.1212/wnl.23.12.1273. [DOI] [PubMed] [Google Scholar]
  9. Evans R. H. The entry of labelled calcium into the innervated region of the mouse diaphragm muscle. J Physiol. 1974 Aug;240(3):517–533. doi: 10.1113/jphysiol.1974.sp010621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fenichel G. M., Dettbarn W. D., Newman T. M. An experimental myopathy secondary to excessive acetylcholine release. Neurology. 1974 Jan;24(1):41–45. doi: 10.1212/wnl.24.1.41. [DOI] [PubMed] [Google Scholar]
  11. Fenichel G. M., Kibler W. B., Olson W. H., Dettbarn W. D. Chronic inhibition of cholinesterase as a cause of myopathy. Neurology. 1972 Oct;22(10):1026–1033. doi: 10.1212/wnl.22.9.1026. [DOI] [PubMed] [Google Scholar]
  12. Fischer G. Die Azetylcholinesterase an der motorischen Endplatte des Rattenzwerchfells nach Imtoxikation mit Paraoxaon und Soman bei Applikation von Oximen. Experientia. 1970 Apr 15;26(4):402–403. doi: 10.1007/BF01896914. [DOI] [PubMed] [Google Scholar]
  13. Fischer G. Inhibierung und Restitution der Azetylcholinesterase an der motorischen Endplatte im Zwerchfell der Ratte nach Intoxikation mit Soman. Histochemie. 1968;16(2):144–149. [PubMed] [Google Scholar]
  14. Hudson C. S., Rash J. E., Tiedt T. N., Albuquerque E. X. Neostigmine-induced alterations at the mammalian neuromuscular junction. II. Ultrastructure. J Pharmacol Exp Ther. 1978 May;205(2):340–356. [PubMed] [Google Scholar]
  15. JENKINSON D. H., NICHOLLS J. G. Contractures and permeability changes produced by acetylcholine in depolarized denervated muscle. J Physiol. 1961 Nov;159:111–127. doi: 10.1113/jphysiol.1961.sp006796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kohlhardt M., Bauer B., Krause H., Fleckenstein A. Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflugers Arch. 1972;335(4):309–322. doi: 10.1007/BF00586221. [DOI] [PubMed] [Google Scholar]
  17. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laskowski M. B., Dettbarn W. D. The pharmacology of experimental myopathies. Annu Rev Pharmacol Toxicol. 1977;17:387–409. doi: 10.1146/annurev.pa.17.040177.002131. [DOI] [PubMed] [Google Scholar]
  19. Laskowski M. B., Olson W. H., Dettbarn W. D. Initial ultrastructural abnormalities at the motor end plate produced by a cholinesterase inhibitor. Exp Neurol. 1977 Oct;57(1):13–33. doi: 10.1016/0014-4886(77)90041-3. [DOI] [PubMed] [Google Scholar]
  20. Laskowski M. B., Olson W. H., Dettbarn W. D. Ultrastructural changes at the motor end-plant produced by an irreversible cholinesterase inhibitor. Exp Neurol. 1975 May;47(2):290–306. doi: 10.1016/0014-4886(75)90258-7. [DOI] [PubMed] [Google Scholar]
  21. Nastuk W. L. Mechanisms of neuromuscular blockade. Ann N Y Acad Sci. 1971 Sep 15;183:171–182. doi: 10.1111/j.1749-6632.1971.tb30749.x. [DOI] [PubMed] [Google Scholar]
  22. Parsons R. L., Nastuk W. L. Activation of contractile system in depolarized skeletal muscle fibers. Am J Physiol. 1969 Aug;217(2):364–369. doi: 10.1152/ajplegacy.1969.217.2.364. [DOI] [PubMed] [Google Scholar]
  23. Preusser H. J. Die Ultrastruktur der motorischen Endplatte im Zwerchfell der Ratte und Veränderungen nach Inhibierung der Acetylcholinesterase. Z Zellforsch Mikrosk Anat. 1967;80(3):436–457. [PubMed] [Google Scholar]
  24. Reddy M. K., Etlinger J. D., Rabinowitz M., Fischman D. A., Zak R. Removal of Z-lines and alpha-actinin from isolated myofibrils by a calcium-activated neutral protease. J Biol Chem. 1975 Jun 10;250(11):4278–4284. [PubMed] [Google Scholar]
  25. Salpeter M. M., Kasprzak H., Feng H., Fertuck H. Endplates after esterase inactivation in vivo: correlation between esterase concentration, functional response and fine structure. J Neurocytol. 1979 Feb;8(1):95–115. doi: 10.1007/BF01206461. [DOI] [PubMed] [Google Scholar]
  26. Wecker L., Dettbarn W. D. Paraoxon-induced myopathy: muscle specificity and acetylcholine involvement. Exp Neurol. 1976 May;51(2):281–291. doi: 10.1016/0014-4886(76)90253-3. [DOI] [PubMed] [Google Scholar]