T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views (original) (raw)

Abstract

Using monoclonal antibodies and multiparameter fluorescence analyses, we show that the expression of Lyt-1, Lyt-2, and Lyt-3 on T cell subpopulations is more complex than was originally recognized by the cytotoxic depletion studies with conventional reagents that defined the Lyt-1+2+3+, Lyt-1+2-3-, and Lyt-1-2+3+ populations. We detect at least some Lyt-1 on all T (Thy-1-bearing) lymphocytes; however, in agreement with previous studies, we find that Lyt-2+3+ cells are more difficult to depelete with anti-Lyt-1 than Lyt-1+2-3- cells. Surprisingly, we found a small subpopulation of cells carrying relatively large amounts of Lyt-1 and no Thy-1 detectable by fluorescence-activated cell sorter analysis. We also detect cells with this phenotype histologically in B cell zones (primary follicles) and germinal centers in spleen and lymph nodes. In general, the Lyt-1 only population represents approximately 2% of spleen cells. The relative quantitative expression of Thy-1, Lyt- 1, Lyt-2, and Lyt-3 changes systematically during T cell maturation. Among Lyt-1+2+3+ cells in the thymus, Thy-1 and Lyt-2 are high, whereas Lyt-1 is low. Among splenic T cells, in contrast, Thy-1 is low, Lyt-1 is high, and Lyt-2 and Lyt-3 are a little higher than in thymus. In general, Thy-1 expression is negatively correlated with Lyt-1. Thus, even among splenic and lymph node T cells subpopulations exist that tend to be either high Thy-1 and low Lyt-1 or vice versa. Lyt-2+3+ cells represent approximately 85% of thymocytes but only approximately 35% of splenic or lymph node T cells. The Lyt-2+3+ cells are found predominantly in the low Lyt-1, high Thy-1 subpopulation.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beverley P. C., Woody J., Dunkley M., Feldmann M., McKenzie I. Separation of suppressor and killer T cells by surgace phenotype. Nature. 1976 Aug 5;262(5568):495–497. doi: 10.1038/262495a0. [DOI] [PubMed] [Google Scholar]
  2. Boyse E. A., Itakura K., Stockert E., Iritani C. A., Miura M. Ly-C: a third locus specifying alloantigens expressed only on thymocytes and lymphocytes. Transplantation. 1971 Mar;11(3):351–353. [PubMed] [Google Scholar]
  3. Burakoff S. J., Finberg R., Glimcher L., Lemonnier F., Benacerraf B., Cantor H. The biologic significance of alloreactivity. The ontogeny of T-cell sets specific for alloantigens or modified self antigens. J Exp Med. 1978 Nov 1;148(5):1414–1422. doi: 10.1084/jem.148.5.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cantor H., Boyse E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med. 1975 Jun 1;141(6):1376–1389. doi: 10.1084/jem.141.6.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cantor H., Boyse E. A. Lymphocytes as models for the study of mammalian cellular differentiation. Immunol Rev. 1977 Jan;33:105–124. doi: 10.1111/j.1600-065x.1977.tb00364.x. [DOI] [PubMed] [Google Scholar]
  6. Cantor H., Simpson E., Sato V. L., Fathman C. G., Herzenberg L. A. Characterization of subpopulations of T lymphocytes. I. Separation and functional studies of peripheral T-cells binding different amounts of fluorescent anti-Thy 1.2 (theta) antibody using a fluorescence-activated cell sorter (FACS). Cell Immunol. 1975 Jan;15(1):180–196. doi: 10.1016/0008-8749(75)90174-4. [DOI] [PubMed] [Google Scholar]
  7. Fathman C. G., Small M., Herzenberg L. A., Weissman I. L. Thymus cell maturation. II. Differentiation of three "mature" subclasses in vivo. Cell Immunol. 1975 Jan;15(1):109–128. doi: 10.1016/0008-8749(75)90169-0. [DOI] [PubMed] [Google Scholar]
  8. Gutman G. A., Weissman I. L. Lymphoid tissue architecture. Experimental analysis of the origin and distribution of T-cells and B-cells. Immunology. 1972 Oct;23(4):465–479. [PMC free article] [PubMed] [Google Scholar]
  9. Herzenberg L. A., Okumura K., Cantor H., Sato V. L., Shen F. W., Boyse E. A., Herzenberg L. A. T-cell regulation of antibody responses: demonstration of allotype-specific helper T cells and their specific removal by suppressor T cells. J Exp Med. 1976 Aug 1;144(2):330–344. doi: 10.1084/jem.144.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huber B., Cantor H., Shen F. W., Boyse E. A. Independent differentiative pathways of Ly1 and Ly23 subclasses of T cells. Experimental production of mice deprived of selected T-cell subclasses. J Exp Med. 1976 Oct 1;144(4):1128–1133. doi: 10.1084/jem.144.4.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  12. Köhler G., Howe S. C., Milstein C. Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur J Immunol. 1976 Apr;6(4):292–295. doi: 10.1002/eji.1830060411. [DOI] [PubMed] [Google Scholar]
  13. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  14. Loken M. R., Parks D. R., Herzenberg L. A. Two-color immunofluorescence using a fluorescence-activated cell sorter. J Histochem Cytochem. 1977 Jul;25(7):899–907. doi: 10.1177/25.7.330738. [DOI] [PubMed] [Google Scholar]
  15. Mathieson B. J., Sharrow S. O., Campbell P. S., Asofsky R. An Lyt differentiated thymocyte subpopulation detected by flow microfluorometry. Nature. 1979 Feb 8;277(5696):478–480. doi: 10.1038/277478a0. [DOI] [PubMed] [Google Scholar]
  16. Nakayama E., Shiku H., Stockert E., Oettgen H. F., Old L. J. Cytotoxic T cells: Lyt phenotype and blocking of killing activity by Lyt antisera. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1977–1981. doi: 10.1073/pnas.76.4.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parks D. R., Bryan V. M., Oi V. T., Herzenberg L. A. Antigen-specific identification and cloning of hybridomas with a fluorescence-activated cell sorter. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1962–1966. doi: 10.1073/pnas.76.4.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rouse R. V., van Ewijk W., Jones P. P., Weissman I. L. Expression of MHC antigens by mouse thymic dendritic cells. J Immunol. 1979 Jun;122(6):2508–2515. [PubMed] [Google Scholar]
  19. Shiku H., Kisielow P., Bean M. A., Takahashi T., Boyse E. A., Oettgen H. F., Old L. J. Expression of T-cell differentiation antigens on effector cells in cell-mediated cytotoxicity in vitro. Evidence for functional heterogeneity related to the surface phenotype of T cells. J Exp Med. 1975 Jan 1;141(1):227–241. doi: 10.1084/jem.141.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trowbridge I. S., Ralph P., Bevan M. J. Differences in the surface proteins of mouse B and T cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):157–161. doi: 10.1073/pnas.72.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]