Long-term potentiation of excitatory synaptic transmission in the rat hippocampus: the role of inhibitory processes (original) (raw)

Abstract

1. The possibility that changes in inhibitory processes are responsible for long-term potentiation (l.t.p.) was examined using the rat hippocampal slice preparation.

2. Inhibitory pathways were characterized using both extra- and intracellular recordings from the CA1 pyramidal cell layer. Stimulating electrodes were placed in either stratum radiatum or the alveus to allow orthodromic or antidromic activation of the pyramidal cells.

3. Using extracellular recordings, inhibition was studied by applying paired pulses at interstimulus intervals of 20-500 msec through either the same or different stimulating electrodes, and quantifying the reduction in the population spike. An antidromic conditioning pulse was least effective in influencing the test response, while paired stimuli delivered through separate stimulators in stratum radiatum revealed the longest duration effects. Inhibition was either reduced or enhanced, depending upon the stimulation paradigm, with increasing stimulus intensity.

4. With l.t.p., alterations in paired-pulse inhibition were observed corresponding to the changes in conditioning pulse amplitude. Reducing stimulus intensity to restore the initial conditioning pulse amplitude eliminated these effects.

5. Using intracellular recordings, the effects of l.t.p. on inhibition were studied by examining changes in e.p.s.p.—i.p.s.p. sequences, i.p.s.p.s evoked by antidromic stimulation, and spontaneous depolarizing i.p.s.p.s observed with KCl-filled electrodes.

6. Following l.t.p. enhanced e.p.s.p.s and slightly reduced, but prolonged, i.p.s.p.s were observed in response to orthodromic stimulation. Antidromically evoked, as well as spontaneous, i.p.s.p.s were unaffected.

7 It is concluded that alterations in inhibitory processes are not responsible for l.t.p. in hippocampal subfield CA1. However, changes in the strength of inhibitory synapses as a consequence of long-term potentiation may modify the functional character of the hippocampal connexions.

541

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P., ECCLES J. C., LOYNING Y. LOCATION OF POSTSYNAPTIC INHIBITORY SYNAPSES ON HIPPOCAMPAL PYRAMIDS. J Neurophysiol. 1964 Jul;27:592–607. doi: 10.1152/jn.1964.27.4.592. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P., ECCLES J. C., LOYNING Y. PATHWAY OF POSTSYNAPTIC INHIBITION IN THE HIPPOCAMPUS. J Neurophysiol. 1964 Jul;27:608–619. doi: 10.1152/jn.1964.27.4.608. [DOI] [PubMed] [Google Scholar]
  3. Alger B. E., Nicoll R. A. GABA-mediated biphasic inhibitory responses in hippocampus. Nature. 1979 Sep 27;281(5729):315–317. doi: 10.1038/281315a0. [DOI] [PubMed] [Google Scholar]
  4. Alger B. E., Nicoll R. A. Spontaneous inhibitory post-synaptic potentials in hippocampus: mechanism for tonic inhibition. Brain Res. 1980 Oct 27;200(1):195–200. doi: 10.1016/0006-8993(80)91108-7. [DOI] [PubMed] [Google Scholar]
  5. Alger B. E., Teyler T. J. Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res. 1976 Jul 16;110(3):463–480. doi: 10.1016/0006-8993(76)90858-1. [DOI] [PubMed] [Google Scholar]
  6. Andersen P., Bliss T. V., Skrede K. K. Unit analysis of hippocampal polulation spikes. Exp Brain Res. 1971;13(2):208–221. doi: 10.1007/BF00234086. [DOI] [PubMed] [Google Scholar]
  7. Andersen P., Dingledine R., Gjerstad L., Langmoen I. A., Laursen A. M. Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J Physiol. 1980 Aug;305:279–296. doi: 10.1113/jphysiol.1980.sp013363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Andersen P., Gross G. N., Lomo T., Sveen O. Participation of inhibitory and excitatory interneurones in the control of hippocampal cortical output. UCLA Forum Med Sci. 1969;11:415–465. [PubMed] [Google Scholar]
  9. Andersen P., Sundberg S. H., Sveen O., Swann J. W., Wigström H. Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J Physiol. 1980 May;302:463–482. doi: 10.1113/jphysiol.1980.sp013256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Andersen P., Sundberg S. H., Sveen O., Wigström H. Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature. 1977 Apr 21;266(5604):736–737. doi: 10.1038/266736a0. [DOI] [PubMed] [Google Scholar]
  11. Baudry M., Oliver M., Creager R., Wieraszko A., Lynch G. Increase in glutamate receptors following repetitive electrical stimulation in hippocampal slices. Life Sci. 1980 Jul 28;27(4):325–330. doi: 10.1016/0024-3205(80)90200-3. [DOI] [PubMed] [Google Scholar]
  12. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Buckle P. J., Haas H. L. Enhancement of synaptic transmission by 4-aminopyridine in hippocampal slices of the rat. J Physiol. 1982 May;326:109–122. doi: 10.1113/jphysiol.1982.sp014180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Creager R., Dunwiddie T., Lynch G. Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. J Physiol. 1980 Feb;299:409–424. doi: 10.1113/jphysiol.1980.sp013133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dingledine R., Gjerstad L. Penicillin blocks hippocampal IPSPs, unmasking prolonged EPSPs. Brain Res. 1979 May 18;168(1):205–209. doi: 10.1016/0006-8993(79)90141-0. [DOI] [PubMed] [Google Scholar]
  16. Dingledine R., Langmoen I. A. Conductance changes and inhibitory actions of hippocampal recurrent IPSPs. Brain Res. 1980 Mar 10;185(2):277–287. doi: 10.1016/0006-8993(80)91068-9. [DOI] [PubMed] [Google Scholar]
  17. Dunwiddie T., Lynch G. Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol. 1978 Mar;276:353–367. doi: 10.1113/jphysiol.1978.sp012239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fifková E., Van Harreveld A. Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol. 1977 Apr;6(2):211–230. doi: 10.1007/BF01261506. [DOI] [PubMed] [Google Scholar]
  19. Haas H. L., Schaerer B., Vosmansky M. A simple perfusion chamber for the study of nervous tissue slices in vitro. J Neurosci Methods. 1979 Dec;1(4):323–325. doi: 10.1016/0165-0270(79)90021-9. [DOI] [PubMed] [Google Scholar]
  20. Lee K. S., Schottler F., Oliver M., Lynch G. Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. J Neurophysiol. 1980 Aug;44(2):247–258. doi: 10.1152/jn.1980.44.2.247. [DOI] [PubMed] [Google Scholar]
  21. Misgeld U., Sarvey J. M., Klee M. R. Heterosynaptic postactivation potentiation in hippocampal CA 3 neurons: long-term changes of the postsynaptic potentials. Exp Brain Res. 1979 Oct;37(2):217–229. doi: 10.1007/BF00237709. [DOI] [PubMed] [Google Scholar]
  22. Schwartzkroin P. A., Wester K. Long-lasting facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice. Brain Res. 1975 May 16;89(1):107–119. doi: 10.1016/0006-8993(75)90138-9. [DOI] [PubMed] [Google Scholar]
  23. Yamamoto C., Chujo T. Long-term potentiation in thin hippocampal sections studied by intracellular and extracellular recordings. Exp Neurol. 1978 Jan 15;58(2):242–250. doi: 10.1016/0014-4886(78)90137-1. [DOI] [PubMed] [Google Scholar]