Construction and testing of mouse--human heteromyelomas for human monoclonal antibody production (original) (raw)

Abstract

FU-266, a mutant human myeloma cell line sensitive to hypoxanthine/aminopterin/thymidine (HAT), was transfected by protoplast fusion with DNA of the recombinant plasmid vector pSV2-neoR, thus acquiring a dominant marker conferring resistance to the antibiotic G-418. One of the resultant neoR clones, E-1, was fused to irradiated (500 rads) or unirradiated cells of the HAT-sensitive, G-418-sensitive, nonproducer mouse myeloma line X63-Ag8.653. Hybrid clones were selected in G-418 plus ouabain, thus preserving their HAT sensitivity. Small numbers of human chromosomes were retained in all such hybrids, but most of them ceased secreting human myeloma (IgE(lambda). Selected hybrid clones were then tested as malignant fusion partners in a series of fusions with polyclonally activated human B lymphocytes and with antigen-primed human B lymphocytes, in some instances after transformation of the latter with Epstein-Barr virus. The yield of viable chimeric hybridomas has been consistently high, as has the proportion of hybridomas secreting human immunoglobulin molecules unpermuted with mouse or human myeloma heavy or light chains. Secretion by many subcloned hybridomas has been stable for over 6 months, and several antigen-specific human monoclonal antibodies have been generated. Thus these heteromyeloma cell lines appear to have significant advantages for human monoclonal antibody production.

7308

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown N. A., Miller G. Immunoglobulin expression by human B lymphocytes clonally transformed by Epstein Barr virus. J Immunol. 1982 Jan;128(1):24–29. [PubMed] [Google Scholar]
  2. Butler J. L., Lane H. C., Fauci A. S. Delineation of optimal conditions for producing mouse-human heterohybridomas from human peripheral blood B cells of immunized subjects. J Immunol. 1983 Jan;130(1):165–168. [PubMed] [Google Scholar]
  3. Chiorazzi N., Wasserman R. L., Kunkel H. G. Use of Epstein-Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas. J Exp Med. 1982 Sep 1;156(3):930–935. doi: 10.1084/jem.156.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cote R. J., Morrissey D. M., Houghton A. N., Beattie E. J., Jr, Oettgen H. F., Old L. J. Generation of human monoclonal antibodies reactive with cellular antigens. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2026–2030. doi: 10.1073/pnas.80.7.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Croce C. M., Linnenbach A., Hall W., Steplewski Z., Koprowski H. Production of human hybridomas secreting antibodies to measles virus. Nature. 1980 Dec 4;288(5790):488–489. doi: 10.1038/288488a0. [DOI] [PubMed] [Google Scholar]
  6. Edwards P. A., Smith C. M., Neville A. M., O'Hare M. J. A human-hybridoma system based on a fast-growing mutant of the ARH-77 plasma cell leukemia-derived line. Eur J Immunol. 1982 Aug;12(8):641–648. doi: 10.1002/eji.1830120804. [DOI] [PubMed] [Google Scholar]
  7. Eisenbarth G. S., Linnenbach A., Jackson R., Scearce R., Croce C. M. Human hybridomas secreting anti-islet autoantibodies. Nature. 1982 Nov 18;300(5889):264–267. doi: 10.1038/300264a0. [DOI] [PubMed] [Google Scholar]
  8. Engvall E. Quantitative enzyme immunoassay (ELISA) in microbiology. Med Biol. 1977 Aug;55(4):193–200. [PubMed] [Google Scholar]
  9. HAYFLICK L. Decontaminating tissue cultures infected with pleuropneumonia-like organisms. Nature. 1960 Mar 12;185:783–784. doi: 10.1038/185783a0. [DOI] [PubMed] [Google Scholar]
  10. Harris H., Miller O. J., Klein G., Worst P., Tachibana T. Suppression of malignancy by cell fusion. Nature. 1969 Jul 26;223(5204):363–368. doi: 10.1038/223363a0. [DOI] [PubMed] [Google Scholar]
  11. Hirano T., Teraoka O., Teranishi T., Tsuyuguchi I., Tohda H., Oikawa A. Establishment of autoantibody-producing cell lines from peripheral blood lymphocytes of patients with systemic lupus erythematosus. Microbiol Immunol. 1980;24(9):879–886. doi: 10.1111/j.1348-0421.1980.tb02892.x. [DOI] [PubMed] [Google Scholar]
  12. Irie R. F., Sze L. L., Saxton R. E. Human antibody to OFA-I, a tumor antigen, produced in vitro by Epstein-Barr virus-transformed human B-lymphoid cell lines. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5666–5670. doi: 10.1073/pnas.79.18.5666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
  14. Kozbor D., Lagarde A. E., Roder J. C. Human hybridomas constructed with antigen-specific Epstein-Barr virus-transformed cell lines. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6651–6655. doi: 10.1073/pnas.79.21.6651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozbor D., Steinitz M., Klein G., Koskimies S., Mäkelä O. Establishment of anti-TNP antibody-producing human lymphoid lines by preselection for hapten binding followed by EBV transformation. Scand J Immunol. 1979;10(3):187–194. doi: 10.1111/j.1365-3083.1979.tb01339.x. [DOI] [PubMed] [Google Scholar]
  16. Kucherlapati R. S., Baker R. M., Ruddle F. H. Ouabain as a selective agent in the isolation of somatic cell hybrids. Cytogenet Cell Genet. 1975;14(3-6):362–363. doi: 10.1159/000130384. [DOI] [PubMed] [Google Scholar]
  17. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  18. Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
  19. LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lane H. C., Shelhamer J. H., Mostowski H. S., Fauci A. S. Human monoclonal anti-keyhole limpet hemocyanin antibody-secreting hybridoma produced from peripheral blood B lymphocytes of a keyhole limpet hemocyanin-immune individual. J Exp Med. 1982 Jan 1;155(1):333–338. doi: 10.1084/jem.155.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levy R., Dilley J. Rescue of immunoglobulin secretion from human neoplastic lymphoid cells by somatic cell hybridization. Proc Natl Acad Sci U S A. 1978 May;75(5):2411–2415. doi: 10.1073/pnas.75.5.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nabholz M., Miggiano V., Bodmer W. Genetic analysis with human--mouse somatic cell hybrids. Nature. 1969 Jul 26;223(5204):358–363. doi: 10.1038/223358a0. [DOI] [PubMed] [Google Scholar]
  24. Nilsson K., Bennich H., Johansson S. G., Pontén J. Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin Exp Immunol. 1970 Oct;7(4):477–489. [PMC free article] [PubMed] [Google Scholar]
  25. Olsson L., Kaplan H. S. Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5429–5431. doi: 10.1073/pnas.77.9.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pontecorvo G. Induction of directional chromosome elimination in somatic cell hybrids. Nature. 1971 Apr 9;230(5293):367–369. doi: 10.1038/230367a0. [DOI] [PubMed] [Google Scholar]
  27. Raison R. L., Walker K. Z., Halnan C. R., Briscoe D., Basten A. Loss of secretion in mouse-human hybrids need not be due to the loss of a structural gene. J Exp Med. 1982 Nov 1;156(5):1380–1389. doi: 10.1084/jem.156.5.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ritts R. E., Jr, Ruiz-Argüelles A., Weyl K. G., Bradley A. L., Weihmeir B., Jacobsen D. J., Strehlo B. L. Establishment and characterization of a human non-secretory plasmacytoid cell line and its hybridization with human B cells. Int J Cancer. 1983 Feb 15;31(2):133–141. doi: 10.1002/ijc.2910310202. [DOI] [PubMed] [Google Scholar]
  29. Sandri-Goldin R. M., Goldin A. L., Levine M., Glorioso J. C. High-frequency transfer of cloned herpes simplex virus type 1 sequences to mammalian cells by protoplast fusion. Mol Cell Biol. 1981 Aug;1(8):743–752. doi: 10.1128/mcb.1.8.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schaffner W. Direct transfer of cloned genes from bacteria to mammalian cells. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2163–2167. doi: 10.1073/pnas.77.4.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schlom J., Wunderlich D., Teramoto Y. A. Generation of human monoclonal antibodies reactive with human mammary carcinoma cells. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6841–6845. doi: 10.1073/pnas.77.11.6841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schneiderman S., Farber J. L., Baserga R. A simple method for decreasing the toxicity of polyethylene glycol in mammalian cell hybridization. Somatic Cell Genet. 1979 Mar;5(2):263–269. doi: 10.1007/BF01539165. [DOI] [PubMed] [Google Scholar]
  33. Schwaber J., Cohen E. P. Human x mouse somatic cell hybrid clone secreting immunoglobulins of both parental types. Nature. 1973 Aug 17;244(5416):444–447. doi: 10.1038/244444a0. [DOI] [PubMed] [Google Scholar]
  34. Schwaber J. Immunoglobulin production by a human-mouse somatic cell hybrid. Exp Cell Res. 1975 Jul;93(2):343–354. doi: 10.1016/0014-4827(75)90459-0. [DOI] [PubMed] [Google Scholar]
  35. Shoenfeld Y., Hsu-Lin S. C., Gabriels J. E., Silberstein L. E., Furie B. C., Furie B., Stollar B. D., Schwartz R. S. Production of autoantibodies by human-human hybridomas. J Clin Invest. 1982 Jul;70(1):205–208. doi: 10.1172/JCI110595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sikora K., Alderson T., Phillips J., Watson J. V. Human hybridomas from malignant gliomas. Lancet. 1982 Jan 2;1(8262):11–14. doi: 10.1016/s0140-6736(82)92556-9. [DOI] [PubMed] [Google Scholar]
  37. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  38. Stanbridge E. J. Suppression of malignancy in human cells. Nature. 1976 Mar 4;260(5546):17–20. doi: 10.1038/260017a0. [DOI] [PubMed] [Google Scholar]
  39. Steinitz M., Seppälä I., Eichmann K., Klein G. Establishment of a human lymphoblastoid cell line with specific antibody production against group A streptococcal carbohydrate. Immunobiology. 1979 Aug;156(1-2):41–47. [PubMed] [Google Scholar]
  40. Tsuchiya S., Yokoyama S., Yoshie O., Ono Y. Production of diphtheria antitoxin antibody in Epstein-Barr virus-induced lymphoblastoid cell lines. J Immunol. 1980 Apr;124(4):1970–1976. [PubMed] [Google Scholar]
  41. Weiss M. C., Green H. Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1104–1111. doi: 10.1073/pnas.58.3.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yoshie O., Ono Y. Anti-phosphorylcholine antibody-producing cells in human lymphoblastoid cell lines established by transformation with Epstein-Barr virus. Cell Immunol. 1980 Dec;56(2):305–316. doi: 10.1016/0008-8749(80)90106-9. [DOI] [PubMed] [Google Scholar]
  43. Zurawski V. R., Jr, Haber E., Black P. H. Production of antibody to tetanus toxoid by continuous human lymphoblastoid cell lines. Science. 1978 Mar 31;199(4336):1439–1441. doi: 10.1126/science.204013. [DOI] [PubMed] [Google Scholar]