Mapping evolution with ribosome structure: intralineage constancy and interlineage variation (original) (raw)
Abstract
Ribosomal small subunits are organized in three general structural patterns that correspond to the eubacterial, archaebacterial, and eukaryotic lineages. Within each of these lineages, ribosomal structure is highly conserved. Small subunits from all three lineages share a common overall structure except for the following differences: (i) small subunits from archaebacteria and from the cytoplasmic component of eukaryotes both contain a feature on the head of the subunit, the archaebacterial bill, that is absent in eubacteria, and (ii) eukaryotic small subunits contain additional regions of density at the base of the subunit, the eukaryotic lobes, that are absent in archaebacteria and in eubacteria. We interpret the intralineage conservation of ribosomal three-dimensional structure as forming a phylogenetic basis for regarding archaebacteria, eubacteria, and eukaryotes as primitive lines. Although our data are separate and independent from those of Woese and Fox, they lend further support to their proposal [Woese, C. R. & Fox, G. E. (1977) Proc. Natl. Acad. Sci. USA 74, 5088-5090]. These data also provide a simple, rapid, and accurate method for classifying organisms and for identifying new lineages. Finally, interlineage variation of ribosomal structure is used to establish a rigorous framework for considering the evolution of these three lines.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernabeu C., Lake J. A. Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc Natl Acad Sci U S A. 1982 May;79(10):3111–3115. doi: 10.1073/pnas.79.10.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Best A. N. Composition and Characterization of tRNA from Methanococcus vannielii. J Bacteriol. 1978 Jan;133(1):240–250. doi: 10.1128/jb.133.1.240-250.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bommer U. A., Noll F., Lutsch G., Bielka H. Immunochemical detection of proteins in the small subunit of rat liver ribosomes involved in binding of the ternary initiation complex. FEBS Lett. 1980 Feb 25;111(1):171–174. doi: 10.1016/0014-5793(80)80785-x. [DOI] [PubMed] [Google Scholar]
- Boulik M., Hellmann W. Comparison of Artemia salina and Escherichia coli ribosome structure by electron microscopy. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2829–2833. doi: 10.1073/pnas.75.6.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark M. W., Hammons M., Langer J. A., Lake J. A. Helical arrays of Escherichia coli small ribosomal subunits produced in vitro. J Mol Biol. 1979 Dec 5;135(2):507–512. doi: 10.1016/0022-2836(79)90450-9. [DOI] [PubMed] [Google Scholar]
- Darnell J. E., Jr Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science. 1978 Dec 22;202(4374):1257–1260. doi: 10.1126/science.364651. [DOI] [PubMed] [Google Scholar]
- Dickerson R. E. Evolution and gene transfer in purple photosynthetic bacteria. Nature. 1980 Jan 10;283(5743):210–212. doi: 10.1038/283210a0. [DOI] [PubMed] [Google Scholar]
- Emanuilov I., Sabatini D. D., Lake J. A., Freienstein C. Localization of eukaryotic initiation factor 3 on native small ribosomal subunits. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1389–1393. doi: 10.1073/pnas.75.3.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox G. E., Magrum L. J., Balch W. E., Wolfe R. S., Woese C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4537–4541. doi: 10.1073/pnas.74.10.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank J., Verschoor A., Boublik M. Computer averaging of electron micrographs of 40S ribosomal subunits. Science. 1981 Dec 18;214(4527):1353–1355. doi: 10.1126/science.7313694. [DOI] [PubMed] [Google Scholar]
- Girshovich A. S., Kurtskhalia T. V., Ovchinnikov YuA, Vasiliev V. D. Localization of the elongation factor G on Escherichia coli ribosome. FEBS Lett. 1981 Jul 20;130(1):54–59. doi: 10.1016/0014-5793(81)80664-3. [DOI] [PubMed] [Google Scholar]
- Grivell L. A., Groot G. S.P. Spinach chloroplast ribosomes active in protein synthesis. FEBS Lett. 1972 Sep 1;25(1):21–24. doi: 10.1016/0014-5793(72)80444-7. [DOI] [PubMed] [Google Scholar]
- Hofman J. D., Lau R. H., Doolittle W. F. The number, physical organization and transcription of ribosomal RNA cistrons in an archaebacterium: Halobacterium halobium. Nucleic Acids Res. 1979 Nov 10;7(5):1321–1333. doi: 10.1093/nar/7.5.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessel M., Klink F. Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin. Nature. 1980 Sep 18;287(5779):250–251. doi: 10.1038/287250a0. [DOI] [PubMed] [Google Scholar]
- Kühlbrandt W., Unwin P. N. Distribution of RNA and protein in crystalline eukaryotic ribosomes. J Mol Biol. 1982 Apr 15;156(3):431–448. doi: 10.1016/0022-2836(82)90259-5. [DOI] [PubMed] [Google Scholar]
- Lake J. A. Practical aspects of immune electron microscopy. Methods Enzymol. 1979;61:250–257. doi: 10.1016/0076-6879(79)61014-5. [DOI] [PubMed] [Google Scholar]
- Lake J. A. Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J Mol Biol. 1976 Jul 25;105(1):131–139. doi: 10.1016/0022-2836(76)90200-x. [DOI] [PubMed] [Google Scholar]
- Lake J. A., Strycharz W. A. Ribosomal proteins L1, L17 and L27 from Escherichia coli localized at single sites on the large subunit by immune electron microscopy. J Mol Biol. 1981 Dec 25;153(4):979–992. doi: 10.1016/0022-2836(81)90462-9. [DOI] [PubMed] [Google Scholar]
- Lake J. A. The ribosome. Sci Am. 1981 Aug;245(2):84–97. doi: 10.1038/scientificamerican0881-84. [DOI] [PubMed] [Google Scholar]
- Matheson A. T., Yaguchi M., Balch W. E., Wolfe R. S. Sequence homologies in the N-terminal region of the ribosomal 'A' proteins from Methanobacterium Thermoautotrophicum and Halobacterium cutirubrum. Biochim Biophys Acta. 1980 Nov 20;626(1):162–169. doi: 10.1016/0005-2795(80)90207-x. [DOI] [PubMed] [Google Scholar]
- McConnell D. J., Searcy D. G., Sutcliffe J. G. A restriction enzyme Tha I from the thermophilic mycoplasma Thermoplasma acidophilum. Nucleic Acids Res. 1978 Jun;5(6):1729–1739. doi: 10.1093/nar/5.6.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickett-Heaps J. The evolution of mitosis and the eukaryotic condition. Biosystems. 1974 Jul;6(1):37–48. doi: 10.1016/0303-2647(74)90009-4. [DOI] [PubMed] [Google Scholar]
- Ramakrishnan V. R., Yabuki S., Sillers I. Y., Schindler D. G., Engelman D. M., Moore P. B. Positions of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli. J Mol Biol. 1981 Dec 15;153(3):739–760. doi: 10.1016/0022-2836(81)90416-2. [DOI] [PubMed] [Google Scholar]
- Strycharz W. A., Nomura M., Lake J. A. Ribosomal proteins L7/L12 localized at a single region of the large subunit by immune electron microscopy. J Mol Biol. 1978 Dec 5;126(2):123–140. doi: 10.1016/0022-2836(78)90355-8. [DOI] [PubMed] [Google Scholar]
- Sánchez-Madrid F., Conde P., Vázquez D., Ballesta J. P. Acidic proteins from Saccharomyces cerevisiae ribosomes. Biochem Biophys Res Commun. 1979 Mar 15;87(1):281–291. doi: 10.1016/0006-291x(79)91677-2. [DOI] [PubMed] [Google Scholar]
- Tornabene T. G., Langworthy T. A. Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science. 1979 Jan 5;203(4375):51–53. doi: 10.1126/science.758677. [DOI] [PubMed] [Google Scholar]
- Visentin L. P., Yaguchi M., Matheson A. T. Structural homologies in alanine-rich acidic ribosomal proteins from procaryotes and eucaryotes. Can J Biochem. 1979 Jun;57(6):719–726. doi: 10.1139/o79-090. [DOI] [PubMed] [Google Scholar]
- White B. N., Bayley S. T. Methionine transfer RNAs from the extreme halophile, Halobacterium cutirubrum. Biochim Biophys Acta. 1972 Jul 31;272(4):583–587. doi: 10.1016/0005-2787(72)90513-8. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zillig W., Tu J., Holz I. Thermoproteales--a third order of thermoacidophilic archaebacteria. Nature. 1981 Sep 3;293(5827):85–86. doi: 10.1038/293085a0. [DOI] [PubMed] [Google Scholar]